Section 1 - IntelliJ IDEA integration

Section 2 - New Build Language

Build Language

Build Language is an extensible build automation DSL for defining builds in a declarative way. Generated into Ant, it leverages Ant execution power while keeping your sources clean and free from clutter. Organized as a stack of MPS languages with ANT at the bottom, it allows each part of your build procedure to be expressed at a different abstraction level. Building a complex artifact (like an MPS plug-in) could be specified in just one line of code, if you follow the language conventions, but, at the same time, nothing prevents you from diving deeper and customize the details like file management or manifest properties.

Modular builds

Build script dependencies allow you to organize your build as a sequence of steps, each of which may potentially run on a different machine. At generation time, a sophisticated resolution mechanism transforms the high-level dependencies into the appropriate ANT tasks. For example, a dependency on a java module is replaced with its compiled jar location. Referring to and depending on the elements packaged inside existing archives will implicitly extracts them without any extra effort on your side.

Plug-ins packaging

Distributing languages as plug-ins for either IntelliJ IDEA, MPS or as your own standalone IDE has become an extremely easy task. The functionality has been packaged into an extension to Build Language, which knows how to build MPS modules and supports all kinds of packaging. You can either write the whole script by hand or rely on the Build Solution Wizard, which helps you start with a new script.

You can refer to the User Guide and to the Build Language documentation for more details.

Section 3 - Improvements to the out-of-the-box languages

Customizable scopes

An element that contains a reference to some other element typically knows nothing about the scope applicable to the reference. In such cases the best solution for finding applicable elements is to forward the request upwards in the AST. By implementing the ScopeProvider interface you can intercept such requests coming from your descendants and have full control over their scopes. Since BaseLanguage itself now also follows this strategy, you can easily restrict visible elements in embedded statements or expressions.

Textual references

The reference representation can now vary depending on the reference location, as it is in many existing textual languages. It allows languages to support the notion of qualified reference when simple name of the target element is not enough. The new API requires developers to provide the referenceText value as a part of the Scope implementation (see jetbrains.mps.scope.Scope). All references in BaseLanguage now support java-style resolving. Also, in case of broken references the referenceText serves as a hint to the developer to fix it easily.

Custom persistence for MPS models through stubs

With the improved jetbrains.mps.lang.stubs language, which now supports write as well as read operations, it is now possible to declare a custom stubs model manager that supports model saving functionality. Using this extension point you can teach MPS how to interoperate with any custom persistence syntax. You can load and save your models from and into a format that fits your needs best. Read more at the Stubs and custom persistence page.

Suppressing errors

One of very effective ways to maintain high quality of code in MPS is the instant on-the-fly code analysis that highlights errors, warnings or potential problems directly in code. Just like with other code quality reporting tools, it is essential for the user to be able to mark false positives so that they are not reported repeatedly. MPS now provides the language developers with a customizable way to suppress errors in their languages. This functionality was used to implement Suppress Errors intention for BaseLanguage:
One place where this feature is also useful are the generators, since type errors, for example, are sometimes unavoidable in the templates.

New XML language

A new language named jetbrains.mps.core.xml was introduced in MPS 2.5. This XML language has been designed in accordance to the XML specification.

Changes in the Refactoring language

In order to make the structure of MPS core languages more consistent and clear, the Refactoring language has been changed considerably. Several new and easy-to-use constructs have been added and parts of the functionality was deprecated and moved into the Actions language.

Section 4 - IDE enhancements

Dependencies analyzer

The Dependencies Analyzer can analyze and report dependencies among modules or models. It detects and highlights the elements that your code really refers to.

Module Dependencies Tool

The Module Dependencies Tool allows the user to overview all the dependencies and used languages of a module or a set of modules, to detect potential cyclic dependencies as well as to see detailed paths that form the dependencies. The tool can be invoked from the project pane when one or more modules are selected.

Save Transient Models indicator

It's not a secret that you can save transient models during code generation for debugging purposes. In MPS 2.5 you can switch now on/off saving of transient models just by clicking onto a button in the status bar:

Version control

In MPS 2.0 the Merge Driver has been introduced to resolve merge conflicts inside MPS-specific files. In MPS 2.5 the Merge driver has been modified in order to handle merge conflicts in a more reliable way:


Using MPS projectional editing functionality and improved debugger support it is possible to implement cell-based highlighting of DSL code instead of the usual single-line highlighting typical for text-based debuggers:

Java Debugger

In addition to changes in the general debugger framework a number of improvements were implemented for Java-specific debugging

Comfortable way to run MPS from MPS

A Run Configuration, which starts another instance of MPS from MPS, can now automatically open a selected project on start. You can either choose an arbitrary project path or open the current project that is already open in the current MPS instance.

Section 5 - Other

New Productivity Guide

Good command of the tools is undoubtedly one of the attributes of an efficient developer. MPS 2.5 can monitor your actions and give you statistics on how frequently you use its most prominent editing and refactoring capabilities. Go to Help | Productivity Guide to see how well you do. Additionally, we've prepared a list of a couple dozen tricks you could learn through the Tip of the Day window to become more fluent with the MPS editor.

MPS.Classpath module removed

There are four specific modules used to expose all available Java API of the platform and MPS as JavaStub models:

These modules were created as a substitution for the MPS.Classpath module that existed in previous versions. In essence, MPS.Classpath has been split into these four modules to isolate the core functionality from any dependencies on UI-/Editor-/Platform- specific APIs.


One of the goals for MPS 2.5 release was making our platform modular. By exploring Plugins page in setting dialog it's easy to see increased number of plugin forming MPS 2.5 platform. If some plugins are not necessary for current tasks those plugins can be simply switched of increasing performance of the platform. Same trick can be used to create reduced IDE for some specific DSLs based on MPS.


If you already use MPS in your projects, you may benefit from reading our migration guide with detailed description of the migration process.