
Inspections
JetGroovy offers many code inspections which can appear as warnings or errors in the IDE. Many of the inspections have quick
fixes associated with them. This list is complete as of version 1.6.20679.

Assignment issues

Assignment
replaceable
with operator
assignment

 This inspection reports instances of assignment operations in Groovy which can be replaced by
operator-assignment. Code using operator assignment may be clearer, and theoretically more
performant.Use the check box below to ignore the conditional operators and . Replacing conditional&& ||
operators with operator assignment modifies the semantics of the expression.

Assignment
to for-loop
parameter

 This inspection reports any instances of assignment a variable declared in a Groovy statement in thefor
body of that statement. It also reports any attempt to increment or decrement the variable. While
occasionally intended, this construct can be extremely confusing, and is often the result of a typo.

Assignment
to method
parameter

 This inspection reports any instances of assignment to a variable declared as a Groovy method
parameter. It also reports any attempt to increment or decrement the variable. While occasionally
intended, this construct can be extremely confusing, and is often the result of a typo.

Nested
assignment

 This inspection reports any instances of Groovy assignment expressions nested inside other expressions.
While admirably terse, such expressions may be confusing, and violate the general design priniciple that
a given construct should do precisely one thing.

Result of
assignment
used

 This inspection reports any Groovy assignment expressions nested inside other expressions, so as to use
the assigned value immediately. While admirably terse, such expressions may be confusing, and violate
the general design principle that a given construct should do precisely one thing.

Silly
assignment

 This inspection reports any assignment of a Groovy variable to itself.

Potentially confusing code constructs

Conditional
expression

 This inspection reports any instances of the ternary condition operator. Some coding standards prohibit the
use of the condition operator, in favor of statements.if-else

Double
negation

 This inspection reports any instances of double negation in Groovy code, like if (!!functionCall()).

Statement
with
empty
body

 This inspection reports any instances of , , or statements in Groovy code having empty bodies.if while do for
While occasionally intended, this construction is confusing, and often the result of a typo.

Negated
conditional
expression

 This inspection reports any instances of Groovy conditional expressions whose conditions are negated.
Flipping the order of the conditional expression branches will usually increase the clarity of such
statements.

Negated if
condition
expression

 This inspection reports any instances of statements which contain branches and whose conditionsif else
are negated. Flipping the order of the and branches will usually increase the clarity of suchif else
statements.

Nested
conditional
expression

 This inspection reports any ternary conditional expressions in Groovy script file that are nested inside other
conditional expressions. Such nested conditionals may be very confusing. "Elvis" expressions are counted
as conditionals for purpose of this inspection.

Nested
switch
statement

 This inspection reports any statements in Groovy script file that are nested inside other statemswitch switch
ents. Such nested switch statements are confusing, and may result in unexpected behaviour.

Octal
integer

 This inspection reports any instances of Groovy octal integer literals. Some coding standards prohibit the
use of octal literals, as they may be easily confused with decimal literals.

Overly
complex
arithmetic
expression

 This inspection reports reports any instances of Groovy arithmetic expressions with too many terms. Such
expressions may be confusing and bug-prone.Use the field provided below to specify the maximum
number of terms allowed in an arithmetic expression.

Overly
complex
boolean
expression

 This inspection reports reports any instances of Groovy boolean expressions with too many terms. Such
expressions may be confusing and bug-prone.Use the field provided below to specify the maximum
number of terms allowed in an boolean expression.

Pointless
arithmetic
expression

 This inspection reports any instances of pointless arithmetic expressions in Groovy code. Such expressions
include adding or subtracting zero, multiplying by zero or one, division by one, and shift by zero. Such
expressions may be the result of automated refactorings not completely followed through to completion,
and in any case are unlikely to be what the developer intended to do.

Pointless
boolean
expression

 This inspection reports any instances of pointless or pointlessly complicated boolean expressions in Groovy
code. Such expressions include ing with true, ing with false, equality comparison with a booleanand or
literal, or negation of a boolean literal. Such expressions may be the result of automated refactorings not
completely followed through to completion, and in any case are unlikely to be what the developer intended
to do.

Result of
increment
or
decrement
used

 This inspection reports any instances of Groovy increment or decrement expressions nested inside other
expressions. While admirably terse, such expressions may be confusing, and violate the general design
principle that a given construct should do precisely one thing.

Control Flow

Break statement This inspection reports any instances of statements in a Groovy script, other than in switchbreak
statements.

Conditional
expression can
be conditional
call

 This inspection reports instances of Groovy ternary conditional expressions which can be replaced by
the conditional call (?.) operation.

Conditional
expression can
be elvis

 This inspection reports any uses of the ternary condition operator in Groovy which can be replaced
by the simpler "elvis" operator.

Conditional
expression with
identical
branches

 This inspection reports any instances of Groovy conditional expressions with identical "then" and
"else" branches. Such expressions are almost certainly programmer error.

Constant
conditional
expression

 This inspection reports any instances of Groovy conditional expressions of the formtrue?result1:resul
 or . These expressions sometimes occur as the result of automatict2 false?result1:result2

refactorings, and may obviously be simplified.

Constant if
statement

 This inspection reports any instances of statements of the form or . Theseif if(true)... if(false)...
statements sometimes occur due to automatic refactorings, and may obviously be simplified.

Continue
statement

 This inspection reports any instances of statements in a Groovy script.continue

Fallthrough in
switch
statement

 This inspection reports any instances of 'fallthrough' in a Groovy switch statement. While occasionally
useful, fallthrough is often unintended, and may lead to surpising bugs.

If statement
with identical
branches

 This inspection reports any instances of Groovy statements with identical "then" and branches.if else
Such statements are almost certainly programmer error.

If statement
with too many
branches

 This inspection reports instances of Groovy statements with too many branches. Such statementsif
may be confusing, and are often the sign of inadequate levels of design abstraction.Use the field
provided below to specify the maximum number of branches expected.

Loop statement
that doesn't loop

 This inspection reports any instance of Groovy or statements whose bodies are guaranteedfor while
to execute at most once. Normally, this is an indication of a bug.

'return'
statement can
be implicit

 This inspection reports any return statements at the end of Groovy closures which can be made
implicit. Groovy closures implicitly return the value of the last statement in them.

Switch
statement with
no default case

 This inspection reports any instances of Groovy statements that do not contain labels.switch default

Redundant
conditional
expression

 This inspection reports any instances of Groovy ternary conditional operators of the form x?true:false
or similar, which can be trivially simplified.

Redundant 'if'
statement

 This inspection reports instances of Groovy statements which can be simplified to singleif
assignment or statements. For example:return

if(foo())
 {
 return true;
 }
 else
 {
 return false;
 }

can be simplified to

return foo();

Unnecessary
'continue'
statement

 This inspection reports on any unnecessary Groovy statements at the end of loops. Thesecontinue
may be safely removed.

Unnecessary
'return'
statement

 This inspection reports on any unnecessary Groovy statements at the end of constructors andreturn
methods returning . These may be safely removed.void

Probable bugs

Divide by
zero

 This inspection reports any instances of division by zero or remainder by zero in Groovy code.

Infinite loop
statement

 This inspection reports any instances of Groovy , , or statements which can only exit byfor while do
throwing an exception. While such statements may be correct, they are often a symptom of coding
errors.

Infinite
recursion

 This inspection reports any instances of Groovy methods which must either recurse infinitely or throw an
exception. Methods reported by this inspection can not return normally.

Non
short-circuit
boolean

 This inspection reports any uses of the non-short-circuit forms of boolean 'and' and 'or' (and) in& |
Groovy code. The non-short-circuit versions are occasionally useful, but their presence is often due to
typos of the short-circuit forms (and), and may lead to subtle bugs.&& ||

Result of
array
allocation
ignored

 This inspection reports any instances of Groovy array allocation where the array allocated ignored. Such
allocation expressions are legal Groovy, but are usually either inadvertant, or evidence of a very odd
object initialization strategy.

Result of
object
allocation
ignored

 This inspection reports any instances of Groovy object allocation where the object allocated ignored. Such
allocation expressions are legal Groovy, but are usually either inadvertant, or evidence of a very odd
object initialization strategy.

Error handling

'continue' or
'break' inside
'finally' block

 This inspection reports any instances of or statements inside of blocks in Groovybreak continue finally
code. While occasionally intended, such statements are very confusing, may mask exceptions thrown,
and tremendously complicate debugging.

Empty 'catch'
block

 This inspection reports empty blocks. While occasionally intended, this empty blocks cancatch catch
make debugging extremely difficult.

Empty 'finally'
block

 This inspection reports instances of empty blocks in Groovy code. Empty blocks usuallyfinally finally
indicate coding errors.

Empty 'try'
block

 This inspection reports any instances of empty blocks in Groovy code. Empty blocks usuallytry finally
indicate coding errors.

'return' inside
'finally' block

 This inspection reports any instances of Groovy statements inside of blocks. Whilereturn finally
occasionally intended, such statements may mask exceptions thrown, and tremendouslyreturn
complicate debugging.

'throw' inside
'finally' block

 This inspection reports any instances of Groovy statements inside of blocks. Whilethrow finally
occasionally intended, such statements may mask exceptions thrown, and tremendouslythrow
complicate debugging.

Unused catch
parameter

 This inspection reports any parameters that are unused in their corresponding blocks. Thiscatch
inspection will not report any parameters named "ignore" or "ignored".catch

GPath inspections

Getter call can be
property access

 This inspection reports any calls to "getter" methods in Groovy which can be replaced by the
equivalent property access form.

Call to List.get can be
keyed access

 This inspection reports any calls in Groovy code to java.util.List.get() methods. Such calls can
be replaced by the shorter and clearer keyed access form.

Call to List.set can be
keyed access

 This inspection reports any calls in Groovy code to java.util.List.set() methods. Such calls can
be replaced by the shorter and clearer keyed access form.

Call to Map.get can be
keyed access

 This inspection reports any calls in Groovy code to java.util.Map.get() methods. Such calls can
be replaced by the shorter and clearer keyed access form.

Call to Map.put can be
keyed access

 This inspection reports any calls in Groovy code to java.util.Map.put() methods. Such calls can
be replaced by the shorter and clearer keyed access form.

Setter call can be
property access

 This inspection reports any calls to "setter" methods in Groovy which can be replaced by the
equivalent property access form.

Method Metrics

Method
with too
many
parameters

 This inspection reports any instances of methods with too many parameters. Methods with too many
parameters can be a good sign that refactoring is necessary. Methods whose signatures are inherited from
library classes are ignored by this inspection.Use the field provided below to specify the maximum
acceptable number of parameters a method might have.

Method
with more
than three
negations

 This inspection reports Groovy methods with three or more negation operations (or). Such methods! !=
may be unnecessarily confusing.

Method
with
multiple
return
points

 This inspection reports any instances of Groovy methods with too many return points. Methods with too
many return points may be confusing, and hard to refactor. Use the field provided below to specify the
maximum acceptable number of return points a method might have.

Overly
complex
method

 This inspection reports any instances of Groovy methods that have too high a cyclomatic complexity.
Cyclomatic complexity is basically a measurement of the number of branching points in a method.
Methods with too high a cyclomatic complexity may be confusing and difficult to test.Use the field provided
below to specify the maximum acceptable cyclomatic complexity a method might have.

Overly
long
method

 This inspection reports any instances of Groovy methods that are too long. Methods that are too long may
be confusing, and are a good sign that refactoring is necessary. Use the field provided below to specify the
maximum acceptable number of non-comment source statements a method might have.

Overly
nested
method

 This inspection reports any instances of Groovy methods whose bodies are too deeply nested. Methods
with too much statement nesting may be confusing, and are a good sign that refactoring may be
necessary.Use the field provided below to specify the maximum acceptable nesting depth a method might
have.

Threading issues

Access to static field locked
on instance data

 This inspection reports on any access to a static field of any non-threadsafe type
specified below, which is accessed from an instance field or a non-synchronized block. It
is possible that the static field is accessed from multiple threads, which can lead to
unspecified side effects.

Busy wait This inspection reports instances of calls to java.lang.Thread.sleep() that occur inside
loops. Such calls are indicative of "busy-waiting". Busy-waiting is often inefficient, and
may result in unexpected deadlocks as busy-waiting threads do not release locked
resources.

Double-checked locking This inspection reports any instances of the double-checked locking construct in Groovy
code. For a discussion of double-checked locking and why it is unsafe,
seehttp://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.htmlUse
the checkbox below to ignore double-checked locking on volatile fields. Using a volatile
field for double-checked locking works correctly on Java 5 virtual machines, but probably
does not have any performance advantages over plain full synchronization of the
accessor method.

Empty 'synchronized' block This inspection reports any instances of statements in Groovy code havingsynchronized
empty bodies. While theoretically this may be the semantics intended, this construction
is confusing, and often the result of a typo.

Nested 'synchronized'
statement

 This inspection reports all instances of nested Groovy statements. Nested synchronized s
 statements are either useless (if the lock objects are identical) or prone toynchronized

deadlock.

'notify()' or 'notifyAll()' while
not synced

 This inspection reports on any Groovy call to not made inside a correspondingnotify()
synchronized statement or synchronized method. Calling on an object withoutnotify()
holding a lock on that object will result in an IllegalMonitorStateException being thrown.
Such a construct is not necessarily an error, as the necessary lock may be acquired
before the containing method is called, but it's worth looking at.

Non-private field accessed in
synchronized context

 This inspection reports any instances of non-final, non-private fields which are accessed
in a synchronized context in Groovy code. A non-private field cannot be guaranteed to
always be accessed in a synchronized manner, and such "partially synchronized" access
may result in unexpectedly inconsistent data structures. Accesses in constructors an
initializers are ignored for purposes of this inspection.

Synchronization on non-final
field

 This inspection reports instances of Groovy statements where the locksynchronized
expression is a non- field. Such statements are unlikely to have useful semantics, asfinal
different threads may be locking on different objects even when operating on the same
object.

Synchronization on 'this' This inspection reports any instances of synchronization in Groovy code which use asthis
their lock expression. Constructs reported include blocks which lock ,synchronized this
and calls to or which target . Such constructs, likewait()notify() notifyAll() wait()
synchronized methods, make it hard to track just who is locking on a given object, and
make possible "denial of service" attacks on objects. As an alternative, consider locking
on a private instance variable, access to which can be completely controlled.

Synchronization on variable
initialized with literal

 This inspection reports any Groovy synchronized block which locks on an object which is
initilized with a literal. String literals are interned and Number literals can be allocated
from a cache. Because of this, it is possible that some other part of the system which
uses an object initialized with the same literal, is actually holding a reference to the
exact same object. This can create unexpected dead-lock situations, if the string was
thought to be private.

Synchronized method This inspection reports any use of the modifier on Groovy methods. Somesynchronized
coding standards prohibit the use of the modifier, in favor of synchronized synchronized
statements.

Call to
System.runFinalizersOnExit()

 This inspection reports any calls to from Groovy code.System.runFinalizersOnExity()
This call is one of the most dangerous in the Java language. It is inherently
non-thread-safe, may result in data corruption, deadlock, and may effect parts of the
program far removed from it's call point. It is deprecated, and it's use strongly
discouraged.

Call to Thread.stop(),
Thread.suspend(), or
Thread.resume()

 This inspection reports any calls to , , or Thread.stop() Thread.suspend() Thread.resume()
from Groovy code. These calls are inherently prone to data corruption and deadlock, and
their use is strongly discouraged.

Unconditional 'wait' call This inspection reports any instances of being called unconditionally within a.wait()
synchronized context in Groovy code. Normally, is used to block a thread until.wait()
some condition is true. If is called unconditionally, that often indicates that the.wait()
condition was checked before a lock was acquired. In that case a data race may occur,
with the condition becoming true between the time it was checked and the time the lock
was acquired. While constructs found by this inspection are not necessarily incorrect,
they are certainly worth examining.

Unsynchronized method
overrides synchronized
method

 This inspection reports any instances of non- Groovy methods overriding synchronized sy
 methods.nchronized

'wait()' not in loop This inspection reports on any call to from Groovy code not made inside a loop. wait() w
 is normally used to suspend a thread until a condition is true, and that conditionait()

should be checked after the returns. A loop is the clearest way to achieve this.wait()

'wait()' while not synced This inspection reports any call to not made inside a corresponding synchronizedwait()
statement or synchronized method within Groovy code. Calling on an objectwait()
without holding a lock on that object will result in an IllegalMonitorStateException being
thrown. Such a construct is not necessarily an error, as the necessary lock may be
acquired before the containing method is called, but its worth looking at.

While loop spins on field This inspection reports on any instances of Groovy loops which spin on the value ofwhile
a non-volatile field, waiting for it to be changed by another thread. In addition to being
potentially extremely CPU intensive when little work is done inside the loop, such loops
are likely have different semantics than intended, as the Java Memory Model allows such
field accesses to be hoisted out of the loop, causing the loop to never complete even if
another thread does change the field's value.

Validity issues

Duplicate switch
case

 This inspection reports duplicated expressions in Groovy statements.case switch

Method with
inconsistent
returns

 This inspection reports any Groovy methods with both value-returning and non-value-returning
return statements. While theoretically valid, such inconsistency is almost certainly due to coding
error.

Unreachable
Statement

 This inspection reports any statements in Groovy script file that are unreachable.

	Inspections

