
REST API
On this page:

General information
General Usage Principles
REST Authentication

Superuser access
REST API Versions
URL Structure

Locator
Supported HTTP Methods

Response Formats
Full and Partial Responses
Logging
CORS Support
API Client Recommendations
TeamCity Data Entities Requests
Projects and Build Configuration/Templates Lists
Project Settings
Project Features
VCS Roots

VCS root instance locator
Build Configuration And Template Settings

Build Configuration Locator
Build Requests

Build Locator
Queued Builds
Triggering a Build

Build node example
Build Tags
Build Pinning
Build Canceling/Stopping
Build Artifacts

Authentication
Other Build Requests

Changes
Revisions
Snapshot dependencies
Artifact dependencies
Build Parameters
Build fields
Statistics
Build log

Tests and Build problems
Muted tests and build problems

Investigations
Agents

Agent Pools
Assigning Projects to Agent Pools

Users
User Groups

Other
Data Backup
Typed Parameters Specification
Build Status Icon
TeamCity Licensing Information Requests
CCTray

Request Examples
Request Sending Tool

Creating a new project
Making user a system administrator

General information
REST API is an open-source bundled .plugin since TeamCity 5.0

To use the REST API, an application makes an HTTP request to the TeamCity server and parses the response.

https://confluence.jetbrains.com/display/TW/REST+API+Plugin

The TeamCity REST API can be used for integrating applications with TeamCity and for those who want to script interactions
with the TeamCity server. TeamCity's REST API allows accessing resources (entities) via URL paths.

General Usage Principles
This documentation is not meant to be comprehensive, but just provide some initial knowledge useful for using the API.

You can start by opening URL in your browser: this page will give you several pointers to http://teamcity:8111/app/rest
explore the API.

Use to get the full list of supported requests and names of parameters. This ishttp://teamcity:8111/app/rest/application.wadl
the primary source of discovery for the supported requests and their parameters. The same data is also exposed in Swagger
format via .../app/rest/swagger.json endpoint You can start with request and thenhttp://teamcity:8111/app/rest/server
drill down following " " attributes of the entities listed.href
Please make sure you read through this "General information" section before using the API.

For the list of supported , use "$help" locator.locator dimensions

Experiment and read the error messages returned: for the most part they should guide you to the right requests.
Example on how to explore the API
Suppose you want to know more on the agents and see (in " " response) that there is a /app/rest/server "/app/rest/age

" URL.nts

try the " request - see the authorized agent list, get the " " way of linking to an agent"/app/rest/agents/ default
from the agent's element attribute.href
get individual agent details via URL (obtained from " " for one of the elements of the/app/rest/agents/id:10 href
previous request).
if you send a request to " " (supplying unsupported/app/rest/agents/$help, or "/ aaa:bbbapp/rest/agents/
locator dimension), you will get the list of the supported dimensions to find an agent via the agent's locator
most of the attributes of the returned agent data (name, connected, authorized) can be used as " " in<field name>
the " " request. Moreover, if you issue a request to the "app/rest/agents/<agentLocator>/<field name> app/rest

" URL, you will get a list of the supported fields in the error message/agents/id:10/test

REST Authentication
You can authenticate yourself for the REST API in the following ways:

Using basic HTTP authentication (it can be slow with certain authentications, see below). Provide a valid TeamCity
username and password with the request. You can force basic auth by including " before the " ""httpAuth /app/rest
part: e.g. http://teamcity:8111/httpAuth/app/rest/builds
Using access to the server as a (if enabled) include " " before the " " part: e.g.: guest user guestAuth /app/rest http://
teamcity:8111/guestAuth/app/rest/builds
if you are checking REST requests from within a browser and you are logged in to TeamCity in the browser, you canGET
just use " " URL: e.g./app/rest http://teamcity:8111/app/rest/builds

Authentication can be slow when not built-in authentication module is used, consider applying the forsession reuse approach
reusing authentication between sequential requests.

If you perform a request from within a TeamCity build, for a limited set of build-related operations (like downloading artifacts)
you can use values of system properties as credentials (within TeamCityteamcity.auth.userId/teamcity.auth.password
settings you can reference them as and).%system.teamcity.auth.userId% %system.teamcity.auth.password%

Within a build, a request for current build details can look like:
curl -u "%system.teamcity.auth.userId%:%system.teamcity.auth.password%"
"%teamcity.serverUrl%/httpAuth/app/rest/builds/id:%teamcity.build.id%"

Superuser access

You can use the with REST API: just provide no user name and the generated password logged into thesuper user account
server log.

The URL examples on this page assume that your TeamCity server web UI is accessible via the http://teamcity:811
 URL.1

http://teamcity:8111/app/rest
http://teamcity:8111/app/rest/application.wadl
http://teamcity:8111/app/rest/server
http://teamcity:8111/httpAuth/app/rest/builds
https://confluence.jetbrains.com/display/TCD10/Guest+User
http://teamcity:8111/guestAuth/app/rest/builds
http://teamcity:8111/guestAuth/app/rest/builds
http://teamcity:8111/app/rest/builds
http://youtrack.jetbrains.com/issue/TW-14209#comment=27-485445
https://confluence.jetbrains.com/display/TCD10/Artifact+Dependencies#ArtifactDependencies-Build-levelauthentication
https://confluence.jetbrains.com/display/TCD10/Super+User
http://teamcity:8111/
http://teamcity:8111/

REST API Versions
As REST API evolves from one TeamCity version to another, there can be incompatible changes in the protocol.

Under the or URL the latest version is http://teamcity:8111/app/rest/ http://teamcity:8111/app/rest/latest
available.
Under the URL, the current version is available and earlier versions CAN behttp://teamcity:8111/app/rest/<version>
available. Our general policy is to supply TeamCity with at least one previous version.
e.g. in TeamCity 10.x for <version> you can use "10.0" for the current and "9.1", "9.0", "8.1", "6.0" to get earlier versions of
the protocol. Protocol version corresponds to the TeamCity version where it was first introduced.

Breaking changes in the API are described in the related section.Upgrade Notes
Please note that additions to the objects returned (such as new XML attributes or elements) are not considered major changes
and do not cause the protocol version to increment.
Also, the endpoints marked with " " comment in may change without a special notice in futureExperimental application.wadl
versions.

Note: The examples on this page use the " " relative URL, replace it with the one containing the version if necessary./app/rest

URL Structure
The general structure of the URL in the TeamCity API is teamcityserver:port/<authType>/app/rest/<apiVersion>/<restAp

, whereiPath>?<parameters>

teamcityserver and define the server name and the port used by TeamCity. This page uses "port http://teamcity:8
" as example URL111/

<authType> (optional) is the to be used, this is generic TeamCity functionalityauthentication type
app/ rest is the root path of TeamCity REST API

 (optional) is a reference to specific version of REST API<apiVersion>
<restApiPath>?<parameters> is the REST API part of the URL

When represents a collection of items (e.g.), then the URL<restApiPath> .../app/rest/<items> .../app/rest/builds
regularly accepts the " " parameter which can filter the items returned. Individual items can regularly be addressed by alocator
URL in the form of Both multiple and single items requests regularly support the .../app/rest/<itmes>/<item_locators>. fi

 parameter.elds

Locator

In a number of places, you can specify a filter string which defines what entities to filter/affect in the request. This string
representation is referred to as "locator" in the scope of REST API.

The locators formats can be:

single value: a string without the following symbols: ,:-()
dimension, allowing to filter entities using multiple criteria: <dimension1>:<value1>,<dimension2>:<value2>,<dimens
ion3>:(<dimension3.1>:<value3.1>,)<dimension3.2>:<value3.2>

Refer to each entity description below for the most popular locator descriptions.
If in doubt what a specific locator supports, send a request with "$help" as the locator value. In response you will get a textual
description of what the locator supports. If a request with invalid locators is sent, the error messages often hint at the error
and list the supported locator dimensions as well.

Note: If the value contains the "," symbol, it should be enclosed into parentheses: "(<value>)". The value of a dimension can
also be encoded as Base64url and sent as "<dimension>:($base64:<b ase64-encoded-value >)" instead of " <dimension>: <v
alue>".

Examples:

 http://teamcity:8111/app/rest/projects gets you the list of projects
- http://teamcity:8111/app/rest/projects/<projectsLocator> http://teamcity:8111/app/rest/projects/id:RESTAPI

 (the example id is used) gets you the full data for the REST API Plugin project. Plugin
 - http://teamcity:8111/app/rest/buildTypes/id:bt284/builds?locator=<buildLocator> http://teamcity:8111/app/

- (example ids are used) to get builds rest/buildTypes/id:bt284/builds?locator=status:SUCCESS,tag:EAP
- to get builds by build locator. http://teamcity:8111/app/rest/builds/?locator=<buildLocator>

Supported HTTP Methods

GET: retrieves the requested data. e.g. usually retrieves a list of entities, .../app/rest/entities .../app/rest/enti

http://teamcity:8111/app/rest/
http://teamcity:8111/app/rest/latest
http://teamcity:8111/app/rest/
https://confluence.jetbrains.com/display/TCD10/Upgrade+Notes
http://teamcity:8111/
http://teamcity:8111/
http://teamcity:8111/app/rest/projects
http://teamcity:8111/app/rest/projects/id:RESTAPIPlugin
http://teamcity:8111/app/rest/projects/id:RESTAPIPlugin
http://teamcity:8111/app/rest/buildTypes/id:bt284/builds?locator=status:SUCCESS,tag:EAP
http://teamcity:8111/app/rest/buildTypes/id:bt284/builds?locator=status:SUCCESS,tag:EAP

1.
2.
3.

GET: retrieves the requested data. e.g. usually retrieves a list of entities, .../app/rest/entities .../app/rest/enti
 retrieves a single entityties/<entity locator>

POST: creates the entity in the request adding it to the existing collection. When posting XML, be sure to specify the "Co
" HTTP header. e.g. to create a new entity, one regularly needs to post a single entityntent-Type: application/xml

data to the URL.../app/rest/entities
PUT: based on the existence of the entity, creates or updates the entity in the request. e.g. supported for some entities,
for URLS like .../app/rest/entities/<entity locator>
DELETE: removes the requested data e.g. for the URL.../app/rest/entities/<entity locator>

Response Formats
The TeamCity REST APIs returns HTTP responses in the following formats according to the :HTTP "Accept" header

Format Response Type HTTP "Accept" header value

plain text single-value responses text/plain

XML complex value responses application/xml

JSON complex value responses application/json

Full and Partial Responses
By default, when a list of entities is requested, only basic fields are included into the response. When a single entry is
requested, all the fields are returned. The complex field values can be returned in full or basic form, depending on a specific
entity.

It is possible to change the set of fields returned for XML and JSON responses for the majority of requests.
This is done by supplying the request parameter describing the fields of the top-level entity and sub-entities to return infields
the response. An example syntax of the parameter is: . This basicallyfield,field2(field2_subfield1,field2_subfield1)
means "include field and field2 of the top-level entity and for field2 include field2_subfield1 and field2_subfield1 fields". The
order of the fields specification plays no role.Examples:
http://teamcity.jetbrains.com/app/rest/buildTypes?locator=affectedProject:(id:TeamCityPluginsByJetBrains)&f

 ields=buildType(id,name,project)
http://teamcity.jetbrains.com/app/rest/builds?locator=buildType:(id:bt345),count:10&fields=count,build(numb
er,status,statusText,agent,lastChange,tags,pinned)

At this time, the response can sometimes include the fields/elements not specifically requested. This can change in the future
versions, so it is recommended to specify all the fields/elements used by the client.

Logging
You can get details on errors and REST request processing in .logs\teamcity-rest.log server log

If you get an error in response to your request and want to investigate the reason, look into .rest-related server logs

To get details about each processed request, turn on debug logging (e.g. set Logging Preset to "debug-rest" on the Administrat
 page or modify the Log4J " " category) .ion/Diagnostics jetbrains.buildServer.server.rest

CORS Support
TeamCity REST can be configured to allow using the cross-origin requests rest.cors.origins internal property.

To allow requests from a page loaded from a specific domain:

Add the page address (including the do) to the comma-separated protocol and port , not use wildcards internal
 e.g. property rest.cors.origins,

rest.cors.origins=http://myinternalwebpage.org.com:8080,https://myinternalwebpage.org.com

To enable support for a :preflight OPTIONS request

Add the .rest.cors.optionsRequest.allowUnauthorized=true internal property
Restart the TeamCity server.
Use the ' URL for the requests Do not use ' , do not use the ' prefix'/app/rest/latest /app/rest' httpAuth' .

If that does not help, enable debug and look for related messages. If there are none, capture the browserlogging

http://teamcity.jetbrains.com/app/rest/buildTypes?locator=affectedProject:(id:TeamCityPluginsByJetBrains)&fields=buildType(id,name,project)
http://teamcity.jetbrains.com/app/rest/buildTypes?locator=affectedProject:(id:TeamCityPluginsByJetBrains)&fields=buildType(id,name,project)
http://teamcity.jetbrains.com/app/rest/builds?locator=buildType:(id:bt345),count:10&fields=count,build(number,status,statusText,agent,lastChange,tags,pinned)
http://teamcity.jetbrains.com/app/rest/builds?locator=buildType:(id:bt345),count:10&fields=count,build(number,status,statusText,agent,lastChange,tags,pinned)
https://confluence.jetbrains.com/display/TCD10/TeamCity+Server+Logs
https://confluence.jetbrains.com/display/TCD10/TeamCity+Monitoring+and+Diagnostics#TeamCityMonitoringandDiagnostics-DebugLogging
https://confluence.jetbrains.com/display/TCD10/TeamCity+Monitoring+and+Diagnostics#TeamCityMonitoringandDiagnostics-DebugLogging
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://confluence.jetbrains.com/display/TCD10/Configuring+TeamCity+Server+Startup+Properties#ConfiguringTeamCityServerStartupProperties-TeamCityinternalproperties
https://confluence.jetbrains.com/display/TCD10/Configuring+TeamCity+Server+Startup+Properties#ConfiguringTeamCityServerStartupProperties-TeamCityinternalproperties
https://confluence.jetbrains.com/display/TCD10/Configuring+TeamCity+Server+Startup+Properties#ConfiguringTeamCityServerStartupProperties-TeamCityinternalproperties
https://youtrack.jetbrains.com/issue/TW-27606
https://confluence.jetbrains.com/display/TCD10/Configuring+TeamCity+Server+Startup+Properties#ConfiguringTeamCityServerStartupProperties-TeamCityinternalproperties

If that does not help, enable debug and look for related messages. If there are none, capture the browserlogging
traffic and messages to investigate the case.

API Client Recommendations
When developing a client using REST API, consider the following recommendations:

Make root REST API URL configurable (e.g. allow to specify an alternative for " " part of the URL).app/rest/<version>
This will allow to direct the client to another version of the API if necessary.
Ignore (do not error out) item's attributes and sub-items which are unknown to the client. New sub-items are
sometimes added to the API without version change and this will ensure the client is not affected by the change.
Set large (and make them configurable) request timeouts. Some API calls can take minutes, especially on a large
server.
Use HTTP sessions to make consecutive requests (use TCSESSIONID cookie returned from the first authenticated
response instead of supplying raw credentials all the time). This saves time on authentication which can be significant
for external authentication providers.
Beware of partial answers when requesting list of items: some requests are paged by default. Value of the "count"
attribute in the response indicate the number of the items on the current page and there can be more pages available.
If you need to process more (e.g. all) items, read and process "nextHref" attribute of the response entity for items
collections. If the attribute is present it means there might be more items when queried by the URL provided. Related
locator dimensions are "count" (page limit) and "lookupLimit" (depth of search). Even when the returned "count" is 0, it
does not mean there are no more items if there is "nextHref" attribute present.
Do not increase the " " value in the locators without a second thought. Doing so has the direct effect oflookupLimit
loading the server more and may require increased amounts of CPU and memory. It is assumed that those increasing
the default limit understand the negative consequences for the server performance.
Do not abuse the ability to execute automated requests for TeamCity API: do not query the API too frequently and
restrict the data requested to only that necessary (using due and specifying necessary). Check the serverlocators fields
behavior under load from your requests. Make sure not to repeat the request frequently if it takes time to process the
request.

TeamCity Data Entities Requests

Projects and Build Configuration/Templates Lists
List of projects: GET http://teamcity:8111/app/rest/projects
Project details: where can be GET http://teamcity:8111/app/rest/projects/<projectLocator> <projectLocator> id:<in

 or ternal_project_id> name:<project%20name>

List of Build Configurations: GET http://teamcity:8111/app/rest/buildTypes
List of Build Configurations of a project: GET http://teamcity:8111/app/rest/projects/<projectLocator>buildTypes

Get projects as configured by the specified user with sub-projects/ Build Configurations data and their order on the Overview
: page GET http://teamcity:8111/app/rest/projects?locator=selectedByUser:current&fields=count,project(id,par

entProjectId,projects(count,project(id),$locator(selectedByUser:current)),buildTypes(count,buildType(id),$l
ocator(selectedByUser:current)))

List of templates for a particular project: GET http://teamcity:8111/app/rest/projects/<projectLocator>/templates
List of all the templates on the server: GET http://teamcity:8111/app/rest/buildTypes?locator=templateFlag:true

Project Settings
Get project details: GET http://teamcity:8111/app/rest/projects/<projectLocator>/
Delete a project: DELETE http://teamcity:8111/app/rest/projects/<projectLocator>/
Create a new empty project: plain text (name) to POST http://teamcity:8111/app/rest/projects/
Create (or copy) a project: POST XML <newProjectDescription name='New Project Name' id='newProjectId'
copyAllAssociatedSettings='true'><parentProject locator='id:project1'/><sourceProject

 to . Also see . locator='id:project2'/></newProjectDescription> http://teamcity:8111/app/rest/projects an example
Edit project parameters: GET/DELETE/PUT http://teamcity:8111/app/rest/projects/<projectLocator>/parameters/<par

(produces XML, JSON and plain text depending on the "Accept" header, accepts plain text and XML and JSON) ameter_name>
Also supported are requests and/parameters/<parameter_name>/name .../parameters/<parameter_name>/value

Project name/description/archived status: GET/PUT http://teamcity:8111/app/rest/projects/<projectLocator>/<field_
 (accepts/produces text/plain) where is one of " ", " ", " ".name> <field_name> name description archived

Project's parent project: GET/PUT XML http://teamcity:8111/app/rest/projects/<projectLocator>/parentProject

http://teamcity:8111/app/rest/projects
http://teamcity:8111/app/rest/buildTypes
http://teamcity:8111/app/rest/buildTypes
http://teamcity:8111/app/rest/buildTypes
http://teamcity:8111/app/rest/projects?locator=selectedByUser:current&fields=count,project(id,parentProjectId,projects(count,project(id),$locator(selectedByUser:current)),buildTypes(count,buildType(id),$locator(selectedByUser:current)))
http://teamcity:8111/app/rest/projects?locator=selectedByUser:current&fields=count,project(id,parentProjectId,projects(count,project(id),$locator(selectedByUser:current)),buildTypes(count,buildType(id),$locator(selectedByUser:current)))
http://teamcity:8111/app/rest/projects?locator=selectedByUser:current&fields=count,project(id,parentProjectId,projects(count,project(id),$locator(selectedByUser:current)),buildTypes(count,buildType(id),$locator(selectedByUser:current)))
http://teamcity:8111/app/rest/projects?locator=selectedByUser:current&fields=count,project(id,parentProjectId,projects(count,project(id),$locator(selectedByUser:current)),buildTypes(count,buildType(id),$locator(selectedByUser:current)))
http://teamcity:8111/app/rest/buildTypes?locator=templateFlag:true
http://teamcity:8111/app/rest/projects/
http://teamcity:8111/app/rest/projects

Project's parent project: GET/PUT XML http://teamcity:8111/app/rest/projects/<projectLocator>/parentProject

Project Features
Project features (e.g. issue trackers, versioned settings, custom charts, shared resources and third-party report tabs) are
exposed as entries under the "project" node and via dedicated requests.

List of project features: To filter features, add /projects/<projectLocator>/projectFeatureshttp://teamcity:8111/app/rest
"?locator=<projectFeaturesLocator>" to the URL e.g. to find all issue tracker features of GitHub type, use the locator " type:Is

)"sueTracker,property(name:type,value:GithubIssues

Create feature: POST to /projects/<projectLocator>/projectFeatureshttp://teamcity:8111/app/rest

Edit features: GET/DELETE/PUT http://teamcity:8111/app/rest/projects/<projectLocator>/projectFeatures/<feature
Id>

VCS Roots
List all VCS roots: GET add parameter to list only, http://teamcity:8111/app/rest/vcs-roots locator=<vcsRootLocator>
the VCS roots matched
Get details of a VCS root/delete a VCS root: ,GET/DELETE http://teamcity:8111/app/rest/vcs-roots/<vcsRootLocator>
where " " can be " " or other VCS root locator <vcsRootLocator> id:<internal VCS root id>
Create a new VCS root: POST VCS root XML (similar to the one retrieved by a GET request for VCS root details) to http://tea
mcity:8111/app/rest/vcs-roots

Also supported:

GET/PUT http://teamcity:8111/app/rest/vcs-roots/<vcsRootLocator>/properties/<property_name>
GET/PUT http://teamcity:8111/app/rest/vcs-roots/<vcsRootLocator>/<field_name>, where is "id",<field_name>
"name", "project" (post project locator to "project" to associate a VCS root with a specific project).

List : GETVCS root instances http://teamcity:8111/app/rest/vcs-root-instances?locator=<vcsRootInstancesLocator>

A is the setting configured in the TeamCity UI, a "VCS root instance" is an internal TeamCity entity which is derived 'VCS root'
from the "VCS root" to perform the actual VCS operation.
If a VCS root has no %-references to parameters, a single VCS root corresponds to a single "VCS root instance".
If a VCS root has %-reference to a parameter and the reference resolves to a different value when the VCS root is attached to
different configurations or when custom builds are run, a single "VCS root" can generate several "VCS root instances".

Since TeamCity 10.0:

There are two endpoints dedicated to being used in from the version control repositories:commit hooks
POST http://teamcity:8111/app/rest/vcs-root-instances/checkingForChangesQueue?locator=<vcsRootInstancesLoca
tor> - schedules checking for changes for the matched VCS root instances and returns the list of VCS root instances matched
(just like GET http://teamcity:8111/app/rest/vcs-root-instances?locator=<vcsRootInstancesLocator>)
POST http://teamcity:8111/app/rest/vcs-root-instances/commitHookNotification?locator=<vcsRootInstancesLocat
or> - returns plain-text human-readable message onschedules checking for changes for the matched VCS root instances and
the action performed, HTTP response 202 in case of successful operation
Both perform the same action (put the VCS root instances matched by the <locator>) to the queue for "checking for changes"
process and differ only in responses they produce.
Note that since the matched VCS root instances are the same as for .../app/rest/vcs-root-instances?locator=<locator>
request and that means that by default and the rest are ignored. If this limit is reached,only the first 100 are matched
consider tweaking the <locator> to match fewer instances (recommended) or increase the limit, e.g. by adding " ",count:1000
to the locator.

VCS root instance locator

Some of the supported " " from above:<vcsRootInstancesLocator>
 - VCS root instances of the specified version control (e.g. "jetbrains.git", "mercurial", "svn")type:<VCS root type>

vcsRoot:() - VCS root instances corresponding to the VCS root matched by " >" <vcsRootLocator> <vcsRootLocator
 - VCS root instances attached to the matching build configurationbuildType:(<buildTypeLocator>)

 - VCS root instances with the property of name "< >"property:(name:<name>,value:<value>,matchType:<matching>) name
and value matching condition " " (e.g. equals, contains) by the value " ".<matchType> <value>

http://teamcity:8111/app/rest/vcs-roots
http://teamcity:8111/app/rest/vcs-roots
http://teamcity:8111/app/rest/vcs-roots
http://teamcity:8111/app/rest/vcs-roots
https://confluence.jetbrains.com/display/TCD10/VCS+root
http://teamcity:8111/app/rest/vcs-root-instances?locator=%3Clocator
https://confluence.jetbrains.com/display/TCD10/Configuring+VCS+Post-Commit+Hooks+for+TeamCity

Build Configuration And Template Settings
Build Configuration/Template details: GET (dhttp://teamcity:8111/app/rest/buildTypes/<buildConfigurationLocator>
etails on the).Build Configuration locator

Please note that there is no transaction, etc. support for settings editing in TeamCity, so all the settings modified via REST API
are taken into account at once. This can result in half-configured builds triggered, etc. Please make sure you pause a build
configuration before changing its settings if this aspect is important for your case.

To get aggregated status for several build configurations, see Build Status Icon section.

Get/set paused build configuration state: GET/PUT http://teamcity:8111/app/rest/buildTypes/<buildTypeLocator>/paus
 (put "true" or "false" text as text/plain)ed

Build configuration settings: GET/DELETE/PUT http://teamcity:8111/app/rest/buildTypes/<buildTypeLocator>/settings
/<setting_name>
Build configuration parameters: GET/DELETE/PUT http://teamcity:8111/app/rest/buildTypes/<buildTypeLocator>/param
eters/<parameter_name>

(produces XML, JSON and plain text depending on the "Accept" header, accepts plain text and XML and JSON). The
requests and are also supported..../parameters/<parameter_name>/name .../parameters/<parameter_name>/value

Build configuration steps: GET/DELETE http://teamcity:8111/app/rest/buildTypes/<buildTypeLocator>/steps/<step_id
>

Create build configuration step: POST The. http://teamcity:8111/app/rest/buildTypes/<buildTypeLocator>/steps
XML/JSON posted is the same as retrieved by GET request to except for the secure settings like.../steps/<step_id>
password: these are not included into responses and should be supplied before POSTing back

Features, triggers, agent requirements, artifact and snapshot dependencies follow the same pattern as steps with URLs like:
 http://teamcity:8111/app/rest/buildTypes/<buildTypeLocator>/features/<id>
 http://teamcity:8111/app/rest/buildTypes/<buildTypeLocator>/triggers/<id>

 http://teamcity:8111/app/rest/buildTypes/<buildTypeLocator>/agent-requirements/<id>
 http://teamcity:8111/app/rest/buildTypes/<buildTypeLocator>/artifact-dependencies/<id>

http://teamcity:8111/app/rest/buildTypes/<buildTypeLocator>/snapshot-dependencies/<id>

Since TeamCity 10, it is possible to disable/enable artifact dependencies and agent requirements:
PUT Disable/enable an artifact dependency http://teamcity:8111/app/rest/buildTypes/<buildTypeLocator>/artifact-d

 ependencies/<id>/disabled (put " true " or "false" text as text/plain)
Disable/enable an agent requirement PUT http://teamcity:8111/app/rest/buildTypes/<buildTypeLocator>/agent-requi

 rements/<id>/disabled (put " true " or "false" text as text/plain)

Build configuration VCS roots: GET/DELETE http://teamcity:8111/app/rest/buildTypes/<buildTypeLocator>/vcs-root-
 entries/<id>

Attach VCS root to a build configuration: POST http://teamcity:8111/app/rest/buildTypes/<buildTypeLocator>/vcs-roo
. The XML/JSON posted is the same as retrieved by GET request to t-entries http://teamcity:8111/app/rest/buildTypes/

except for the secure settings like password: these are not included into <buildTypeLocator>/vcs-root-entries/<id>
responses and should be supplied before POSTing back.

Create a new build configuration with all settings: POST . The XML/JSON postedhttp://teamcity:8111/app/rest/buildTypes
is the same as retrieved by GET request. (Note that still uses the previous version/app/rest/project/XXX/buildTypes
notation and accepts another entity.)

Create a new empty build configuration: POST plain text (name) to http://teamcity:8111/app/rest/projects/<projectLoc
 ator>/buildTypes

Copy a build configuration: POST XML <newBuildTypeDescription name='Conf Name' sourceBuildTypeLocator='id:XXX'
 to copyAllAssociatedSettings='true' shareVCSRoots='false'/> http://teamcity:8111/app/rest/projects/<projectL

ocator>/buildTypes

Since TeamCity 2017.2: Read, detach and attach a build configuration from/to a template: GET/DELETE/POST/PUT http://team
 city:8111/app/rest/buildTypes/<buildTypeLocator>/templates

Before 2017.2: Read, detach and attach a build configuration from/to a template: GET/DELETE/PUT http://teamcity:8111/ap
 (accepts template locator with the "text/plain" Content-Type) p/rest/buildTypes/<buildTypeLocator>/template PUT

Some examples: click to expand

http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/settings/%3Csetting_name%3E
http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/parameters/%3Cparameter_name%3E
http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/features/%3Cid%3E
http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/triggers/%3Cid%3E
http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/agent-requirements/%3Cid%3E
http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/artifact-dependencies/%3Cid%3E
http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/snapshot-dependencies/%3Cid%3E
http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/vcs-root-entries/%3Cid%3E
http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/vcs-root-entries/%3Cid%3E
http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/vcs-root-entries
http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/vcs-root-entries
http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/vcs-root-entries/%3Cid%3E
http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/vcs-root-entries/%3Cid%3E
http://teamcity:8111/app/rest/buildTypes
http://teamcity:8111/app/rest/projects/%3CprojectLocator%3E/buildTypes
http://teamcity:8111/app/rest/projects/%3CprojectLocator%3E/buildTypes
http://teamcity:8111/app/rest/projects/%3CprojectLocator%3E/buildTypes
http://teamcity:8111/app/rest/projects/%3CprojectLocator%3E/buildTypes
http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/templates
http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/templates
http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/template
http://teamcity:8111/app/rest/buildTypes/%3CbuildTypeLocator%3E/template

Set build number counter:
curl -v --basic --user <username>:<password> --request PUT
http://<teamcity.url>/app/rest/buildTypes/<buildTypeLocator>/settings/buildNumbe
rCounter --data <new number> --header "Content-Type: text/plain"

Set build number format:
curl -v --basic --user <username>:<password> --request PUT
http://<teamcity.url>/app/rest/buildTypes/<buildTypeLocator>/settings/buildNumbe
rPattern --data <new format> --header "Content-Type: text/plain"

Build Configuration Locator

The most frequently used values for " " are and <buildTypeLocator> id:<buildConfigurationOrTemplate_id> name:<Build%2
.0Configuration%20name>

Since TeamCity 2017.2, the locator is supported with one of the values: , or experimental type regular composite deployment

Other supported are (these are in state):dimensions experimental
internalId - internal id of the build configuration
project - <projectLocator> to limit the build configurations to those belonging to a single project
affectedProject - <projectLocator> to limit the build configurations under a single project (recursively)
template - <buildTypeLocator> of a template to list only build configurations using the template
templateFlag - boolean value to get only templates or only non-templates
paused - boolean value to filter paused/not paused build configurations

Build Requests
List builds: GET http://teamcity:8111/app/rest/builds/?locator=<buildLocator>
Get details of a specific build: GET (also supports DELETE to http://teamcity:8111/app/rest/builds/<buildLocator>
delete a build)

Get the list of build configurations in a project with the status of the last finished build in each build configuration:
GET http://teamcity:8111/app/rest/buildTypes?locator=affectedProject:(id:ProjectId)&fields=buildType(id,nam

e,builds($locator(running:false,canceled:false,count:1),build(number,status,statusText)))

Build Locator

Using a in build-related requests, you can filter the builds to be returned in the build-related requests. It is referred tolocator
as "build locator" in the scope of REST API.

For some requests, a default filtering is applied which returns only "normal" builds (finished builds which are not canceled, not
failed-to-start, not personal, and on default branch (in branched build configurations)), unless those types of builds are
specifically requested via the locator. To turn off this default filter and process all builds, add "defaultFilter:false" dimension to
the build locator. Default filtering varies depending on the specified locator dimensions. e.g. when "agent" or "user" dimensions
are present, personal, canceled and failed to start builds are included into the results.

Examples of supported build locators:

id:<internal build id> - use when you need to refer to a specific buildinternal build id
number:<build number> - to find build by build number, provided build configuration is already specified
<dimension1>:<value1>,<dimension2>:<value2> - to find builds by multiple criteria

The list of supported build locator dimensions:

project:<project locator> - limit the list to the builds of the specified project (belonging to any build type directly under the
project).

 - limit the list to the builds of the specified project (belonging to any build type directlyaffectedProject:<project locator>
or indirectly under the project)

 - all the builds of the specified build configurationbuildType:(),defaultFilter:false<buildTypeLocator>

 - get tagged builds. If a list of tags is specified, e.g. tag:<tag1>, tag:<tag2>, only the buildstag:<tag> since TeamCity 10
tags:<tags> locator is supported for compatibilitycontaining all the specified tags are returned. The legacy

https://confluence.jetbrains.com/display/TCD10/Build+Configuration#BuildConfiguration-BuildConfigurationTypes
http://teamcity:8111/app/rest/builds/?locator=%3CbuildLocator%3E
http://teamcity:8111/app/rest/builds/%3CbuildLocator%3E
http://teamcity:8111/app/rest/buildTypes?locator=affectedProject:(id:ProjectId)&fields=buildType(id,name,builds($locator(running:false,canceled:false,count:1),build(number,status,statusText)))
http://teamcity:8111/app/rest/buildTypes?locator=affectedProject:(id:ProjectId)&fields=buildType(id,name,builds($locator(running:false,canceled:false,count:1),build(number,status,statusText)))
https://confluence.jetbrains.com/display/TCD10/Working+with+Build+Results#WorkingwithBuildResults-buildID

tags:<tags> locator is supported for compatibilitycontaining all the specified tags are returned. The legacy

status:<SUCCESS/FAILURE/ERROR> - list builds with the specified status only
 - limit builds to only those triggered by the user specifieduser:(<userLocator>)

 - limit builds by the personal flag. By default, personal builds are not included.personal:<true/false/any>

canceled:<true/false/any> - limit builds by the canceled flag. By default, canceled builds are not included.
 - limit builds by the failed to start flag. By default, canceled builds are not included.failedToStart:<true/false/any>

 - - limit builds by the specified state.state: <queued/running/finished>
 - limit builds by the running flag. By default, running builds are not included.running:<true/false/any>

 - fetch hanging builds () state:running,hanging:true since TeamCity 10.0

pinned:<true/false/any> - limit builds by the pinned flag.

branch:<branch locator> - limit the builds by branch. <branch locator> can be the branch name displayed in the UI, or "(na
)". By default onlyme:<name>,default:<true/false/any>,unspecified:<true/false/any>,branched:<true/false/any>

builds from the default branch are returned. To retrieve all builds, add the following locator: branch:default:any. The whole
path will look like this: /app/rest/builds/?locator=buildType:One_Git,branch:default:any

revision:<REVISION> - find builds by revision, e.g. all builds of the given build configuration with the revision: /app/rest/bui
. See more information .lds?locator=revision:(REVISION),buildType:(id:BUILD_TYPE_ID) below

 - agent name to return only builds ran on the agent with name specifiedagentName:<name>

sinceBuild:(<buildLocator>) - limit the list of builds only to those after the one specified
 - limit the list of builds only to those started after the date specified. The date should be in the same formatsinceDate:<date>

as dates returned by REST API (e.g. " ").20130305T170030+0400
 - filterqueuedDate/startDate/finishDate:(date:<time-date>,build:<build locator>,condition:<before/after>)

builds based on the time specified by the build locator, e.g. (finishDate:(date:20151123T203446+0100,condition:after) -
(finished after November 23, 2015, 20:34:46)

count:<number> - serve only the specified number of builds
 - list the builds from the list starting from the position specified (zero-based)start:<number>

 - limit processing to the latest N builds only (the default is 5000). If none of the latest N builds matchlookupLimit:<number>
the other specified criteria of the build locator, 404 response is returned for single build request and empty collection for
multiple builds request. See related note in the section abov

Queued Builds

GET http://teamcity:8111/app/rest/buildQueue

Supported locators:

project:<locator>
buildType:<locator>

Get details of a queued build:
GET http://teamcity:8111/app/rest/buildQueue/id:XXX

For queued builds with snapshot dependencies, the revisions are available in the element of the queued build noderevisions
if a revision is fixed (for regular builds without snapshot dependencies it is not).

Get compatible agents for queued builds (useful for builds having "No agents" to run on)
GET http://teamcity:8111/app/rest/buildQueue/id:XXX/compatibleAgents

Examples:
List queued builds per project:
GET http://teamcity:8111/app/rest/buildQueue?locator=project:<locator>

List queued builds per build configuration:
GET http://teamcity:8111/app/rest/buildQueue?locator=buildType:<locator>

Triggering a Build

To start a build, send a request to with the "build" node (see below) inPOST http://teamcity:8111/app/rest/buildQueue
content - the same node as details of a queued build or finished build. The queued build details will be returned.

When the build is started, the request to the queued build (/app/rest/buildQueue/XXX) will return running/finished build data.
This way, you can monitor the build completeness by querying build details using the " " attribute of the build detailshref

returned on build triggering, until the build has the attribute.state="finished"

http://teamcity:8111/app/rest/buildQueue
http://teamcity:8111/app/rest/buildQueue/id:XXX
http://teamcity:8111/app/rest/buildQueue/id:XXX/compatibleAgents
http://teamcity:8111/app/rest/buildQueue?locator=project:%3Clocator%3E
http://teamcity:8111/app/rest/buildQueue?locator=buildType:%3Clocator%3E
http://teamcity:8111/app/rest/buildQueue

returned on build triggering, until the build has the attribute.state="finished"

Build node example

Basic build for a build configuration:

<build>
 <buildType id="buildConfID"/>
</build>

Build for a branch marked as personal with a fixed agent, comment and a custom parameter:

<build personal="true" branchName="logicBuildBranch">
 <buildType id="buildConfID"/>
 <agent id="3"/>
 <comment><text>build triggering comment</text></comment>
 <properties>
 <property name="env.myEnv" value="bbb"/>
 </properties>
</build>

Queued build assignment to an agent pool:

<build>...
 <agent>
 <pool id="N"/>
 </agent>
...
</build>

Build on a specified change, forced rebuild of all dependencies and clean sources before the build, moved to the build queue
top on triggering. (Note that the change is set via the change's internal modification id; see more):below

<build>
 <triggeringOptions cleanSources="true" rebuildAllDependencies="true" queueAtTop="true"/>
 <buildType id="buildConfID"/>
 <lastChanges>
 <change id="modificationId" personal="false"/>
 </lastChanges>
</build>

Example command line for the build triggering: click to expand

curl -v -u user:password http://teamcity.server.url:8111/app/rest/buildQueue
--request POST --header "Content-Type:application/xml" --data-binary @build.xml

Build Tags

Get tags: GET http://teamcity:8111/app/rest/builds/<buildLocator>/tags/
Replace tags: (put the same XML or JSON asPUT http://teamcity:8111/app/rest/builds/<buildLocator>/tags/
returned by GET)
Add tags: (post the same XML or JSON as returnedPOST http://teamcity:8111/app/rest/builds/<buildLocator>/tags/

http://teamcity:8111/app/rest/builds/%3CbuildLocator%3E/tags/
http://teamcity:8111/app/rest/builds/%3CbuildLocator%3E/tags/
http://teamcity:8111/app/rest/builds/%3CbuildLocator%3E/tags/

Add tags: (post the same XML or JSON as returnedPOST http://teamcity:8111/app/rest/builds/<buildLocator>/tags/
by GET or just a plain-text tag name)
(here should match a single build only)<buildLocator>

Build Pinning

Get current pin status: GET (returns "true" or "false" text)http://teamcity:8111/app/rest/builds/<buildLocator>/pin/
Pin: (the text in the request data is added as aPUT /http://teamcity:8111/app/rest/builds/<buildLocator>/pin
comment for the action)
Unpin: (the text in the request data is added as aDELETE http://teamcity:8111/app/rest/builds/<buildLocator>/pin/
comment for the action)
(here should match a single build only)<buildLocator>

Build Canceling/Stopping

Cancel a running or a queued build: POST the i<buildCancelRequest comment='CommentText' readdIntoQueue='false' />
tem to the URL of a running or a queued build:

Example of cancelling a queued build: click to expand
curl -v -u user:password --request POST "http:// /app/rest/buildQueue/< teamcity:8111 buildLocator >"
--data "<buildCancelRequest comment='' readdIntoQueue='false' />" --header "Content-Type:
application/xml"

Stop a running build and readd it to the queue: POST the <buildCancelRequest comment='CommentText'
 item to the URL of a running build:readdIntoQueue='true' />

Example of cancelling a running build: click to expand
curl -v -u user:password --request POST " >" --datahttp://teamcity:8111/app/rest/builds/< buildLocator
"<buildCancelRequest comment='' readdIntoQueue='true' />" --header "Content-Type: application/xml"

Expose cancelled build details:

See the element of the build item (available via canceledInfo GET http://teamcity:8111/app/rest/builds/<buildLocator
)>

Build Artifacts

GET http://teamcity:8111/app/rest/builds/<build_locator>/artifacts/content/<path> (returns the content of a build
artifact file for a build determined by)<buid_locator>

<path> above can be empty for the root of build's artifacts or be a path within the build's artifacts. The path can span into
the archive content, e.g. dir/path/archive.zip!/path_within_archive

Media-Type: application/octet-stream or a more specific media type (determined from artifact file extension)
Possible error: 400 if the specified path references a directory

GET http://teamcity:8111/app/rest/builds/<build_locator>/artifacts/metadata/<path> (returns information about a
build artifact)
Media-Type: application/xml or application/json

GET http://teamcity:8111/app/rest/builds/<build_locator>/artifacts/children/<path> (returns the list of artifact
children for directories and archives)
Media-Type: application/xml or application/json
Possible error: 400 if the artifact is neither a directory nor an archive

GET http://teamcity:8111/app/rest/builds/<build_locator>/artifacts/archived/<path>?locator=pattern:<wildcar
d> (returns the archive containing the list of artifacts under the path specified. The optional parameter can have file locator <wi

 to limit the files only to those matching the)ldcard> wildcard
Media-Type: application/zip
Possible error: 400 if the artifact is neither a directory nor an archive supports referencing files<artifact relative name>
under archives using "!/" delimiter after the archive name.

Examples:

GET http://teamcity:8111/app/rest/builds/id:100/artifacts/children/my-great-tool-0.1.jar\!/META-INF
GET http://teamcity:8111/app/rest/builds/buildType:(id:Build_Intallers),status:SUCCESS/artifacts/metadata/m
y-great-tool-0.1.jar\!/META-INF/MANIFEST.MF

GET http://teamcity:8111/app/rest/builds/buildType:(id:Build_Intallers),number:16.7.0.2/artifacts/metadata/

http://teamcity:8111/app/rest/builds/%3CbuildLocator%3E/tags/
http://teamcity:8111/app/rest/builds/
http://teamcity:8111/app/rest/builds/
https://confluence.jetbrains.com/display/TCD10/Wildcards
http://teamcity:8111/app/rest/builds/id:100/artifacts/metadata/my-great-tool-0.1.jar!/lib/commons-logging-1.1.1.jar!/META-INF/MANIFEST.MF
http://teamcity:8111/app/rest/builds/id:100/artifacts/metadata/my-great-tool-0.1.jar!/lib/commons-logging-1.1.1.jar!/META-INF/MANIFEST.MF

GET http://teamcity:8111/app/rest/builds/buildType:(id:Build_Intallers),number:16.7.0.2/artifacts/metadata/
 my-great-tool-0.1.jar!/lib/commons-logging-1.1.1.jar!/META-INF/MANIFEST.MF

GET http://teamcity:8111/app/rest/builds/buildType:(id:Build_Intallers),tag:release/artifacts/content/my-gr
eat-tool-0.1.jar!/lib/commons-logging-1.1.1.jar!/META-INF/MANIFEST.MF

Authentication

If you download artifacts from within a TeamCity build, consider / systeusing teamcity.auth.userId teamcity.auth.password
m properties as credentials for the download artifacts request: this way TeamCity will have a way to record that one build used
artifacts of another and will display it on the build's Dependencies tab.

Other Build Requests

Changes

<changes>

<changes> is meant to represent changes the same way as displayed in the build's in TeamCity UI. In the most casesChanges
these are the commits between the current and previous build. The tag is not included into the build by default, it<changes>
has the href attribute only. If you execute the request specified in the href, you'll get the required changes.

Get the list of all of the changes included into the build: GET http://teamcity:8111/app/rest/changes?locator=build:(id:
<buildId>)

 Get details of an individual change: GET http://teamcity:8111/app/rest/changes/id:changeId
Get information about a changed file action: the files node lists changed files. The information about the changed file action is

 reported via the changeType attribute for the files listed as one of the following: added, edited, removed, copied or
unchanged.

Filter all changes by a locator: GET http://teamcity:8111/app/rest/changes?locator=<changeLocator>
Note that the change id is the change's internal id, not the revision. The id can be seen in the change node listed by the REST
API or in the URL of the change details (as modId).

Get all changes for a project: GET http://teamcity:8111/app/rest/changes?locator=project:projectId
Get all the changes in a build configuration since a particular change identified by its id: http://teamcity:8111/app/rest/ch

 anges?locator=buildType:(id:buildConfigurationId),sinceChange:(id:changeId)
Get pending changes for a build configuration http://teamcity:8111/app/rest/changes?locator=buildType:(id:BUILD_CO
NF_ID),pending:true

 <lastChanges>
 The <lastChanges> tag contains information about the last commit included into the build and is only good for re-triggering

the build: it contains the TeamCity internal id (the id attribute) associated with the commit, which is necessary for TeamCity to
 trigger a custom build on the same commit (see the example above).

Revisions

<revisions>

The <revisions> tag the same as revisions table on the build's tab in TeamCity UI: it lists the revisions of all of theChanges
VCS repositories associated with this build that will be checked out by the build on the agent.
A revision might or might not correspond to a change known to TeamCity. e.g. for a newly created build configuration and a
VCS root, a revision will have no corresponding change.

Get all builds with the specified revision: http://teamcity:8111/app/rest/builds?locator=revision(version:XXXX)

<versionedSettingsRevision>

Since TeamCity 10, is added to represent revision of the of the build. <versionedSettingsRevision> versioned settings

Snapshot dependencies

It is possible to retrieve the entire build chain (all snapshot-dependency-linked builds) for a particular build:

http://teamcity:8111/app/rest/builds?locator=snapshotDependency:(to:(id:XXXX),includeInitial:true),defaultF
ilter:false
This gets all the snapshot dependency builds recursively for the build with id XXXX

It possible to find all the snapshot-dependent builds for a particular build:
http://teamcity:8111/app/rest/builds?locator=snapshotDependency:(from:(id:XXXX),includeInitial:true),defaul

http://teamcity:8111/app/rest/builds/id:100/artifacts/metadata/my-great-tool-0.1.jar!/lib/commons-logging-1.1.1.jar!/META-INF/MANIFEST.MF
http://teamcity:8111/app/rest/builds/id:100/artifacts/metadata/my-great-tool-0.1.jar!/lib/commons-logging-1.1.1.jar!/META-INF/MANIFEST.MF
http://teamcity:8111/app/rest/builds/id:100/artifacts/metadata/my-great-tool-0.1.jar!/lib/commons-logging-1.1.1.jar!/META-INF/MANIFEST.MF
http://teamcity:8111/app/rest/builds/id:100/artifacts/content/my-great-tool-0.1.jar!/lib/commons-logging-1.1.1.jar!/META-INF/MANIFEST.MF
http://teamcity:8111/app/rest/builds/id:100/artifacts/content/my-great-tool-0.1.jar!/lib/commons-logging-1.1.1.jar!/META-INF/MANIFEST.MF
http://teamcity:8111/app/rest/builds/id:100/artifacts/content/my-great-tool-0.1.jar!/lib/commons-logging-1.1.1.jar!/META-INF/MANIFEST.MF
https://confluence.jetbrains.com/display/TCD10/Working+with+Build+Results#WorkingwithBuildResults-Changes
http://teamcity:8111/app/rest/changes?locator=build:(id:%3CbuildId%3E)
http://teamcity:8111/app/rest/changes?locator=build:(id:%3CbuildId%3E)
http://teamcity:8111/app/rest/changes?locator=build:(id:%3CbuildId%3E)
http://teamcity:8111/app/rest/changes/id:changeId
http://teamcity:8111/app/rest/changes/id:changeId
http://teamcity:8111/app/rest/changes?locator=project:projectId
http://teamcity:8111/app/rest/changes?locator=buildType:(id:buildConfigurationId),sinceChange:(id:changeId)
http://teamcity:8111/app/rest/changes?locator=buildType:(id:buildConfigurationId),sinceChange:(id:changeId)
http://teamcity:8111/app/rest/changes?locator=buildType:(id:BUILD_CONF_ID),pending:true
http://teamcity:8111/app/rest/changes?locator=buildType:(id:BUILD_CONF_ID),pending:true
https://confluence.jetbrains.com/display/TCD10/Working+with+Build+Results#WorkingwithBuildResults-Changes
http://teamcity:8111/app/rest/builds?locator=revision(version:XXXX)
https://confluence.jetbrains.com/display/TCD10/Storing+Project+Settings+in+Version+Control
http://teamcity:8111/app/rest/builds?locator=snapshotDependency:(to:(id:XXXX),includeInitial:true),defaultFilter:false
http://teamcity:8111/app/rest/builds?locator=snapshotDependency:(to:(id:XXXX),includeInitial:true),defaultFilter:false
http://teamcity:8111/app/rest/builds?locator=snapshotDependency:(to:(id:XXXX),includeInitial:true),defaultFilter:false
http://teamcity:8111/app/rest/builds?locator=snapshotDependency:(to:(id:XXXX),includeInitial:true),defaultFilter:false
http://teamcity:8111/app/rest/builds?locator=snapshotDependency:(from:(id:XXXX),includeInitial:true),defaultFilter:false

tFilter:false

Artifact dependencies

Since TeamCity 10.0.3, there is an experimental ability to:

get all the builds which downloaded artifacts from the build with the given ID (Delivered artifacts in the TeamCity Web
UI):
GET http://teamcity:8111/app/rest/builds?locator=artifactDependency:(from:(id:<build

 ID>),recursive:false)
get all the builds whose artifacts were downloaded by the build with the given ID (Downloaded artifacts in the TeamCity
Web UI):
GET http://teamcity:8111/app/rest/builds?locator=artifactDependency:(to:(id:<build
ID>),recursive:false)

Build Parameters

Get the of a build: parameters http://teamcity:8111/app/rest/builds/id:<build id>/resulting-properties

Build fields

Get single build's field: GET (accepts/produces http://teamcity:8111/app/rest/builds/<buildLocator>/<field_name>
text/plain) where is one of "number", "status", "id", "branchName" and other build's bean attributes<field_name>

Statistics

Get statistics for a single build: GET only http://teamcity:8111/app/rest/builds/<buildLocator>/statistics/
standard/bundled statistic values are listed. See also Custom Charts
Get single build statistics value: GET http://teamcity:8111/app/rest/builds/<buildLocator>/statistics/<value_name>

Get statistics for a list of builds: GET http://teamcity:8111/app/rest/builds?locator=BUILDS_LOCATOR&fields=build(id,
number,status,buildType(id,name,projectName),statistics(property(name,value)))

Build log

Downloading build logs via a REST request is not supported, but there is a way to download the log files described .here

Tests and Build problems
List build problems: GET http://teamcity:8111/app/rest/problemOccurrences?locator=build:(BUILD_LOCATOR)

List tests: GET http://teamcity:8111/app/rest/testOccurrences?locator=<locator dimension>:<value>

Supported locators:

build:(<build locator>) - test run in the build
build:(),muted:true<build locator> - failed tests which were muted in the build
currentlyFailing:true,affectedProject:<project locator> - tests currently failing under the project specified
(recursively)
currentlyMuted:true,affectedProject:<project locator> - tests currently muted under the project specified
(recursively) - See also project's Muted Problems tab

Examples:
List all build's tests: GET http://teamcity:8111/app/rest/testOccurrences?locator=build:<buildLocator>

Get individual test history:
 GET http://teamcity:8111/app/rest/testOccurrences?locator=test:<testLocator>

List build's tests which were muted when the build ran:
GET http://teamcity:8111/app/rest/testOccurrences?locator=build:(id:XXX),muted:true

List currently muted tests (muted since the failure):

GET http://teamcity:8111/app/rest/testOccurrences?locator=build:(id:XXX),currentlyMuted:true

http://teamcity:8111/app/rest/builds?locator=snapshotDependency:(from:(id:XXXX),includeInitial:true),defaultFilter:false
http://teamcity:8111/app/rest/builds?locator=snapshotDependency:(to:(id:XXXX),includeInitial:true),defaultFilter:false
https://confluence.jetbrains.com/display/TCD10/Predefined+Build+Parameters
http://teamcity:8111/app/rest/builds/%3CbuildLocator%3E/%3Cfield_name%3E
http://teamcity:8111/app/rest/builds/%3CbuildLocator%3E/statistics/
https://confluence.jetbrains.com/display/TCD10/Custom+Chart#CustomChart-listOfDefaultStatisticValues
http://teamcity:8111/app/rest/builds/%3CbuildLocator%3E/statistics/%3Cvalue_name%3E
http://teamcity:8111/app/rest/builds?locator=BUILDS_LOCATOR&fields=build(id,number,status,buildType(id,name,projectName),statistics(property(name,value)))
http://teamcity:8111/app/rest/builds?locator=BUILDS_LOCATOR&fields=build(id,number,status,buildType(id,name,projectName),statistics(property(name,value)))
https://confluence.jetbrains.com/display/TCD10/Build+Log#BuildLog-downloadBuildLog
http://teamcity:8111/app/rest/problemOccurrences?locator=build:(BUILD_LOCATOR)
http://localhost:8111/app/rest/testOccurrences?locator=%3Clocator%20dimension%3E:%3Cvalue%3E
http://localhost:8111/app/rest/testOccurrences?locator=build:%3Cbuild%20locator%3E
http://localhost:8111/app/rest/testOccurrences?locator=%3Clocator%20dimension%3E:%3Cvalue%3E
http://teamcity:8111/app/rest/testOccurrences?locator=build:(id:XXX),muted:true
http://teamcity:8111/app/rest/testOccurrences?locator=build:(id:XXX),currentlyMuted:true

GET http://teamcity:8111/app/rest/testOccurrences?locator=build:(id:XXX),currentlyMuted:true

Supported test locators:

"id:<internal test id>" available as a part of the URL on the test history page
"name:<full test name>"

Since TeamCity 10 there is experimental support for exposing single test invocations / runs:

Get invocations of a test:
GET http://teamcity:8111/app/rest/testOccurrences?locator=build:(id:XXX),test:(id:XXX)&fields=$long,testOcc
urrence($short,invocations($long))

 List all test runs with all the invocations flattened:
GET http://teamcity:8111/app/rest/testOccurrences?locator=build:(id:XXX),test:(id:XXX),expandInvocations:tr
ue

Muted tests and build problems

(only since TeamCity 2017.2)

List all muted tests and build problems GET http://teamcity:8111/app/rest/mutes
Unmute a test or build problems DELETE http://teamcity:81111/app/rest/mutes/id:XXXX
Mute a test or build problems POST to . http://teamcity:8111/app/rest/mutes Use the same XML or JSON as returned by
GET

Investigations
List investigations in the Root project and its subprojects: http://teamcity:8111/app/rest/investigations

Supported locators:

test: (id:TEST_NAME_ID)
test: (name:FULL_TEST_NAME)
assignee: (< >)user locator
buildType:(id:XXXX)

Get investigations for a specific test:
 http://teamcity:8111/app/rest/investigations?locator=test:(id:TEST_NAME_ID)

http://teamcity:8111/app/rest/investigations?locator=test:(name:FULL_TEST_NAME)

Get investigations assigned to a user: http://teamcity:8111/app/rest/investigations?locator=assignee:(<user
locator>)

Get investigations for a build configuration: http://teamcity:8111/app/rest/investigations?locator=buildType:(id:XXX
 X)

it is possible toSince TeamCity 2017.2 assign/replace investigations:

POST/PUT to http://teamcity:8111/app/rest/investigations (accepts a single investigation) and experimental support
: for multiple investigations POST/PUT to http://teamcity:8111/app/rest/investigations/multiple (accepts a list of

investigations). Use the same XML or JSON as returned by GET.

Agents
List agents (only authorized agents are included by default): GET http://teamcity:8111/app/rest/agents
List all connected authorized agents: GET http://teamcity:8111/app/rest/agents?locator=connected:true,authorized:true
List all authorized agents: GET http://teamcity:8111/app/rest/agents?locator=authorized:true
List all enabled authorized agents: GET http://teamcity:8111/app/rest/agents?locator=enabled:true,authorized:true
List all agents (including unauthorized): GET http://teamcity:8111/app/rest/agents?locator=authorized:any

The request uses default filtering (depending on the specified locator dimensions, others can have default implied value). To
disable this filtering, add ",defaultFilter:false" to the locator.

http://teamcity:8111/app/rest/testOccurrences?locator=build:(id:XXX),currentlyMuted:true
http://teamcity:8111/app/rest/testOccurrences? locator=build:(id:XXX),test:(id:XXX)&fields=$long,testOccurrence($short,invocations($long))
http://teamcity:8111/app/rest/testOccurrences? locator=build:(id:XXX),test:(id:XXX)&fields=$long,testOccurrence($short,invocations($long))
http://teamcity:8111/app/rest/testOccurrences?locator=build:(id:XXX),test:(id:XXX),expandInvocations:true
http://teamcity:8111/app/rest/testOccurrences?locator=build:(id:XXX),test:(id:XXX),expandInvocations:true
http://teamcity:8111/app/rest/testOccurrences?locator=build:(id:XXX),test:(id:XXX),expandInvocations:true
http://teamcity:8111/app/rest/testOccurrences?locator=build:(id:XXX),test:(id:XXX),expandInvocations:true
http://tcqa-server-trunk:8111/app/rest/mutes
http://teamcity:8111/app/rest/testOccurrences?locator=build:(id:XXX),test:(id:XXX),expandInvocations:true
http://teamcity:8111/app/rest/testOccurrences?locator=build:(id:XXX),test:(id:XXX),expandInvocations:true
http://tcqa-server-trunk:8111/app/rest/mutes/id:15
http://teamcity:8111/app/rest/investigations
http://teamcity:8111/app/rest/mutes
http://teamcity:8111/app/rest/investigations
http://teamcity:8111/app/rest/investigations?locator=test:(id:TEST_NAME_ID)
http://teamcity:8111/app/rest/investigations?locator=test:(name:FULL_TEST_NAME)
http://teamcity:8111/app/rest/investigations?locator=buildType:(id:XXXX)
http://teamcity:8111/app/rest/investigations?locator=buildType:(id:XXXX)
http://teamcity:8111/app/rest/investigations
http://teamcity:8111/app/rest/investigations/multiple
http://teamcity:8111/app/rest/agents
http://teamcity:8111/app/rest/agents?locator=connected:true,authorized:true
http://teamcity:8111/app/rest/agents?locator=authorized:true
http://teamcity:8111/app/rest/agents?locator=enabled:true,authorized:true
http://teamcity:8111/app/rest/agents?locator=authorized:any

Enable/disable an agent: PUT http://teamcity:8111/app/rest/agents/<agentLocator>/enabled (put " true " or "false"
 .text as text/plain). See an example

Authorize/unauthorize an agent: PUT http://teamcity:8111/app/rest/agents/<agentLocator>/authorized (put " true " or
"false" text as text/plain)

Add a comment when enabling/disabling and authorizing/unauthorising an agent ()since TeamCity 10.0 :
Agent enabled/authorized data is exposed in the and nodes:enabledInfo authorizedInfo

<agent id="1" name="agentName" typeId="1" connected="true" enabled="true" authorized="true"
uptodate="true" ip="..........." href="/app/rest/agents/id:1">
 <enabledInfo status="true">
 <comment>
 <user username="userName" id="1" href="/app/rest/users/id:1"/>
 <timestamp>20160406T175040+0300</timestamp>
 <text>newcomment</text>
 </comment>
 </enabledInfo>
 <authorizedInfo status="true">
 <comment>
 <user username="userName" id="1" href="/app/rest/users/id:1"/>
 <timestamp>20160406T183033+0300</timestamp>
 </comment>
 </authorizedInfo>
....
</agent>

GET and requests are supported to the following URLs: PUT
http://teamcity:8111/app/rest/agents/<agentLocator>/enabledInfo
http://teamcity:8111/app/rest/agents/<agentLocator>/authorized

On only status and comment/text sub-items are taken into account:PUT

Example of disabling an agent with a comment: click to expand
curl -v -u user:password --request PUT " " --datahttp://teamcity:8111/app/rest/agents/id:1/enabledInfo
"<enabledInfo status='false'><comment><text>commentText</text></comment></enabledInfo>" --header
"Content-Type:application/xml"

Get/PUT agent's single field: GET/PUT http://teamcity:8111/app/rest/agents/<agentLocator>/<field name>
Delete a build agent: DELETE http://teamcity:8111/app/rest/agents/<agentLocator>

Agent Pools

Get/modify/remove agent pools:
GET/PUT/DELETE http://teamcity:8111/app/rest/projects/XXX/agentPools/ID

Add an agent pool:
POST the element to agentPool name='PoolName http://teamcity:8111/app/rest/projects/XXX/agentPools

Move an agent to the pool from the previous pool:
POST to the pool's agents <agent id='YYY'/> http://teamcity.url/app/rest/agentPools/id:XXX/agents

Example:

curl -v -u user:password --request POST --headerhttp://teamcity.url/app/rest/agentPools/id:XXX/agents
"Content-Type:application/xml" --data "<agent id='1'/>"

Assigning Projects to Agent Pools

Add a project to a pool:
POST the <project> node to http://teamcity.url/app/rest/agentPools/id:XXX/projects

Delete a project from a pool:
DELETE http://teamcity.url/app/rest/agentPools/id:XXX/projects/id:YYY

http://devnet.jetbrains.net/message/5462246#5462246
http://teamcity:8111/app/rest/agents/id:1/enabledInfo
http://teamcity:8111/app/rest/projects/XXX/agentPools/ID
http://teamcity:8111/app/rest/projects/XXX/agentPools
http://teamcity.url/app/rest/agentPools/id:XXX/agents
http://teamcity.url/app/rest/agentPools/id:XXX/agents
http://teamcity.url/app/rest/agentPools/id:XXX/projects
http://teamcity.url/app/rest/agentPools/id:XXX/projects/id:YYY

Users
List of users: GET http://teamcity:8111/app/rest/users
Get specific user details: GET http://teamcity:8111/app/rest/users/<userLocator>
Create a user: POST http://teamcity:8111/app/rest/users
Update/remove specific user: PUT/DELETE http://teamcity:8111/app/rest/users/
For the and requests for a user, post data in the form retrieved by the corresponding GET request. Only the followingPOST PUT
attributes/elements are supported: name, username, email, password, roles, groups, properties.
Work with user roles: http://teamcity:8111/app/rest/users/<userLocator>/roles

<userLocator> can be of a form:

id:<internal user id> - to reference the user by internal ID
username:<user's username> - to reference the user by username/login name

User's single field: GET/PUT http://teamcity:8111/app/rest/users/<userLocator>/<field name>
User's single property: GET/DELETE/PUT http://teamcity:8111/app/rest/users/<userLocator>/properties/<property
name>

User Groups
List of groups: GET http://teamcity:8111/app/rest/userGroups
List of users within a group: GET http://teamcity:8111/app/rest/userGroups/key:Group_Key

Create a group: POST http://teamcity:8111/app/rest/userGroups
Delete a group: DELETE http://teamcity:8111/app/rest/userGroups/key:Group_Key

Other

Data Backup
Start backup: POST http://teamcity:8111/app/rest/server/backup?includeConfigs=true&includeDatabase=true&inclu
deBuildLogs=true&fileName=
where <fileName> is the prefix of the file to save backup to. The file will be created in the default backup directory (see).more
Get current backup status (idle/running): GET http://teamcity:8111/app/rest/server/backup

Typed Parameters Specification
List :typed parameters

for a project: http://teamcity:8111/app/rest/projects/<locator>/parameters
for a build configuration: http://teamcity:8111/app/rest/buildTypes/<locator>/parameters
The information returned is: , , , and . The of the elementparameters count property name value type rawValue type
is the as defined in the UI.parameter specification

Get details of a specific parameter:
 to . Accepts/returns plain-text, XML,GET http://teamcity:8111/app/rest/buildTypes/<locator>/parameters/<name>

JSON. Supply to the request.the relevant headerContent-Type

Create a new parameter:
 the same XML or JSON or just plain-text as returned by to POST GET http://teamcity:8111/app/rest/buildTypes/<locator

 Note that s , i.e. , are listed, but the values included into response, so the.>/parameters/ ecure parameters type=password not
result should be amended before POSTing back.

Since TeamCity 9.1, partial updates of a parameter are possible (currently in an experimental state):

name: PUT the same XML or JSON as returned by to GET http://teamcity:8111/app/rest/buildTypes/<locator>/p
arameters/NAME
type: GET/PUT accepting XML and JSON as returned by to the URL GET http://teamcity:8111/app/rest/buildTypes/
<locator>/parameters/NAME/type
type's rawValue: GET/PUT accepting plain text http://teamcity:8111/app/rest/buildTypes/<locator>/parameters
/NAME/type/rawValue

http://teamcity:8111/app/rest/users
http://teamcity:8111/app/rest/users/%3CuserLocator%3E
http://teamcity:8111/app/rest/users
http://teamcity:8111/app/rest/users/
http://teamcity:8111/app/rest/users/%3CuserLocator%3E/roles
http://teamcity:8111/app/rest/users/%3CuserLocator%3E/%3Cfield%20name%3E
http://teamcity:8111/app/rest/users/%3CuserLocator%3E/properties/%3Cproperty%20name%3E
http://teamcity:8111/app/rest/users/%3CuserLocator%3E/properties/%3Cproperty%20name%3E
http://teamcity:8111/app/rest/userGroups
http://teamcity:8111/app/rest/userGroups/key:Group_Key
http://teamcity:8111/app/rest/userGroups
http://teamcity:8111/app/rest/userGroups/key:Group_Key
ttp://teamcity:8111/app/rest/server/backup?includeConfigs=true&includeDatabase=true&includeBuildLogs=true&fileName=
ttp://teamcity:8111/app/rest/server/backup?includeConfigs=true&includeDatabase=true&includeBuildLogs=true&fileName=
https://confluence.jetbrains.com/display/TCD10/Creating+Backup+from+TeamCity+Web+UI
http://teamcity:8111/app/rest/server/backup
https://confluence.jetbrains.com/display/TCD10/Typed+Parameters
http://teamcity:8111/app/rest/projects/%3Clocator%3E/parameters
http://teamcity:8111/app/rest/buildTypes/%3Clocator%3E/parameters
https://confluence.jetbrains.com/display/TCD10/Typed+Parameters#TypedParameters-AddingParameterSpecification
http://teamcity:8111/app/rest/buildTypes/%3Clocator%3E/parameters/%3Cname%3E
http://teamcity:8111/app/rest/buildTypes/%3Clocator%3E/parameters/
http://teamcity:8111/app/rest/buildTypes/%3Clocator%3E/parameters/
https://confluence.jetbrains.com/display/TCD9/Typed+Parameters#TypedParameters-passwordField
http://teamcity:8111/app/rest/buildTypes/%3Clocator%3E/parameters/NAME
http://teamcity:8111/app/rest/buildTypes/%3Clocator%3E/parameters/NAME
http://teamcity:8111/app/rest/buildTypes/%3Clocator%3E/parameters/NAME/type
http://teamcity:8111/app/rest/buildTypes/%3Clocator%3E/parameters/NAME/type
http://teamcity:8111/app/rest/buildTypes/%3Clocator%3E/parameters/NAME/type/rawValue
http://teamcity:8111/app/rest/buildTypes/%3Clocator%3E/parameters/NAME/type/rawValue

Build Status Icon
Icon that represents a build status:

An .svg icon () recommended : GET http://teamcity:8111/app/rest/builds/<buildLocator>/statusIcon.svg

A .png icon: GET http://teamcity:8111/app/rest/builds/<buildLocator>/statusIcon

Icon that represents build status for several builds (): since TeamCity 10.0
request and " " build locator dimension:GET strob

For project with id "PROJECT_ID":
GET
http://teamcity:8111/app/rest/builds/aggregated/strob:(buildType:(project:(id:PROJECT_ID)))/statusI
con.svg

For all active branches in a build configuration with id "BUILD_CONF_ID":
GET
http://teamcity:8111/app/rest/builds/aggregated/strob:(branch:(buildType:(id:BUILD_CONF_ID),polic
y:active_history_and_active_vcs_branches),locator:(buildType:(id:BUILD_CONF_ID)))/statusIcon.svg

For request /app/rest/builds/aggregated/<build locator> the status is calculated by list of the builds:
app/rest/builds?locator=<build locator>

This allows embedding a build status icon into any HTML page with a simple tag:img

For build configuration with internal id "btXXX":
Status of the last build:
Status of the last build tagged with tag "myTag":

All other are supported. options<buildLocator>

e.g. you can use the following markdown markup to add the build status for GitHub repository for the build configuration with
id "TeamCityPluginsByJetBrains_TeamcityGoogleTagManagerPlugin_Build" and server with guesthttps://teamcity.jetbrains.com

:authentication enabled

[![Build
status](https://teamcity.jetbrains.com/guestAuth/app/rest/builds/buildType:(id:TeamCityPluginsByJet
Brains_TeamcityGoogleTagManagerPlugin_Build)/statusIcon.svg)](https://teamcity.jetbrains.com/view
Type.html?buildTypeId=TeamCityPluginsByJetBrains_TeamcityGoogleTagManagerPlugin_Build)

If the returned image contains "no permission to get data" text (), ensure that one of the
following is true:

the server has the enabled and the guest user has permissions to access the build configurationguest user access
referenced, or
the build configuration referenced has the "enable status widget" ONoption
you are logged in to the TeamCity server in the same browser and you have permissions to view the build configuration
referenced. Note that this will not help for embedded images in GitHub pages as GitHub retrieves the images from the

server-side.

Example requests:

http://teamcity:8111/app/rest/builds/%3CbuildLocator%3E/statusIcon.svg
http://teamcity:8111/app/rest/builds/%3CbuildLocator%3E/statusIcon
https://teamcity.jetbrains.com
https://confluence.jetbrains.com/display/TCD10/Guest+User
https://confluence.jetbrains.com/display/TCD10/Configuring+General+Settings#ConfiguringGeneralSettings-EnableStatusWidget

server-side.

TeamCity Licensing Information Requests
Since TeamCity 10:
Licensing information: GET http://teamcity:8111/app/rest/server/licensingData

List of license keys: GET http://teamcity:8111/app/rest/server/licensingData/licenseKeys
License key details: GET http://teamcity:8111/app/rest/server/licensingData/licenseKeys/<license_key>
Add license key(s): POST text/plain newline-delimited keys to http://teamcity:8111/app/rest/server/licensingDa
ta/licenseKeys
Delete a license key: DELETE http://teamcity:8111/app/rest/server/licensingData/licenseKeys/<license_key>

CCTray
CCTray-compatible XML is available via .http://teamcity:8111/app/rest/cctray/projects.xml

Without authentication (only build configurations available for guest user): http://teamcity:8111/guestAuth/app/rest/cctr
. ay/projects.xml

The CCTray-format XML does not include paused build configurations by default. The URL accepts "locator" parameter instead
with standard .build configuration locator

Request Examples

Request Sending Tool
You can use command line tool to interact with the TeamCity REST API.curl
Example command:

curl -v --basic --user USERNAME:PASSWORD --request POST "http://teamcity:8111/app/rest/users/" --data
@data.xml --header "Content-Type: application/xml"

Where USERNAME, PASSWORD, "teamcity:8111" are to be substituted with real values and data.xml file contains the data to
send to the server.

Creating a new project

Using curl tool

curl -v -u USER:PASSWORD --header "Content-Type: application/xml"http://teamcity:8111/app/rest/projects
--data-binary
"<newProjectDescription name='New Project Name' id='newProjectId'><parentProject
locator='id:project1'/></newProjectDescription>"

Making user a system administrator

1. Get tokensuper user

3. Issue the request
Get command line tool and use a command line:curl

curl -v -u :SUPERUSER_TOKEN --request PUT http://teamcity:8111/app/rest/users/username:USERNAM
E/roles/SYSTEM_ADMIN/g/

where
"SUPERUSER_TOKEN" - the super user token unique for each server start
"teamcity:8111" - the TeamCity server URL
"USERNAME" - the username of the user to be made the system administrator

More examples (for TeamCity 8.0) are available in .this external posting

http://teamcity:8111/app/rest/server/licensingData
http://teamcity:8111/app/rest/server/licensingData/licenseKeys
http://teamcity:8111/app/rest/server/licensingData/licenseKeys
http://teamcity:8111/app/rest/server/licensingData/licenseKeys
http://teamcity:8111/app/rest/server/licensingData/licenseKeys
http://teamcity:8111/app/rest/cctray/projects.xml
http://teamcity:8111/guestAuth/app/rest/cctray/projects.xml
http://teamcity:8111/guestAuth/app/rest/cctray/projects.xml
http://en.wikipedia.org/wiki/CURL
http://teamcity:8111/app/rest/projects
https://confluence.jetbrains.com/display/TCD10/Super+User
http://en.wikipedia.org/wiki/CURL
https://gist.github.com/carlspring/6762356

More examples (for TeamCity 8.0) are available in .this external posting

https://gist.github.com/carlspring/6762356

	REST API

