
Dive into plugins: the PlantMPS plugin

Introduction
The PlantUML plugin developed by the project seemed to me very interesting, I already knew so Imbeddr.com PlantUML
decided to study the plugin to learn how an external tool can be plugged into MPS.
As a bonus I've created a self contained plugin called that let one uses PlantUML without importing into MPS thePlantMPS
whole mbeddr platform.

I've also ported the plugin to PlantMPS so one can use it without mbeddr.LanguageVisualization

The tutorial describes almost all the steps I've followed to write the plugin but it's not a step-by-step guide. There are other
resources available about plugins so here I have not documented generic plugin features, rather I've focused more on specific
technics and API used to implement the plugin by the mbeddr guys.

How the plugin works

First of all the plugin define a language with an interface called , concepts that implement that interface can beIVisualizable
visualized in one or more PlantUML diagram types. To implement this the interface defines two methods:IVisualizable

the first returns an array of strings that are the categories the concept supports, for instance and Class diagram Activity
.diagram

the UI let the user to choose one of the supported categories, so the second method receives the select category and fill
the diagram, also recevied as parameter, with PlantUML statements required to display the selected category for that
concept.

An example of these methods can be:

public string[] getCategories() {
return new string[]{"Class diagram", "Activity diagram"};
}

and

public void getVisualization(string category, VisGraph graph)
 overrides IVisualizable.getVisualization {
 if (category.equals("Class Category")) {
 graph.add("\nclass " +);this.name
 } else if (category.equals("Activity Category")) {
//...
}
}

To use the plugin your concepts should only implement this interface, the rest is handled by the plugin and include:

history to handle and diagram visualization.next previous
save the generated SVG image.
copy the PlantUML source to the clipboard.
zoom
go-to-node feature when the user click on the SVG image.

PlantMPS also differs from the original mbeddr plugin in:

mbeddr starts an HTTP server that exposes several services that can be requested by internal or even external
processes. In the original plugin the feature was implemented transforming the user click over the SVG intogo-to-node
an HTTP request. PlantMPS directly select the requested node. In case you are interested in this topic take a look at app

 and concepts in the module.lication plugin extension point c.mbeddr.mpsutil.httpserver

Credits

mbeddr.com project.
LanguageVisualization plugin.

Getting started

Create the project

http://www.mbeddr.com
http://plantuml.sf.net
https://github.com/mar9000/plantmps
https://github.com/maystar/LanguageVisualization
http://this.name
http://www.mbeddr.com
https://github.com/maystar/LanguageVisualization

Usually I place the MPS stuff under code, so in the project root I can place documentation, README, etc, not related with MPS.
So the project one can open from MPS is in our case under . The language created with the project will hold the code/plantmps

 interface and the class used to hold the diagram source.IVisualisable VisGraph

Then we need a plugin solution as the container for our plugin:

right click over the project node and choose .New -> Plugin Solution
the choosed name is .org.mar9000.plantmps.plugin

The MPS IDE should now look this way:

Create the tool

Now that we have a plugin solution we can create an MPS :Tool

right click over the plugin model and select .New -> j.m.lang.plugin -> Tool
set the name to and caption to .SVGViewer Visualization

Add a tool icon

This is an interesting part. First the icon size used by MPS is 13x13, I copied the icon from the mbeddr project after
investigating the source code of ther Idea project where the class comes from. The dir has been placed at theAllIcons icons
same level of the solution, indeed .code/plantmps/solutions/org.mar9000.plantmps.plugin/icons

Second to specify icons you need the language, so include it as used languge, you can do it from the j.m.lang.resources Module
 dialog:Properties

place the coursor over the field and hit ctrl+spaceicon:
you should see the option.IconResource
select it, a button should appear on the UI that let you select the icon file from the filesystem.
if you look at the the inspector you should see how paths can be specified relative to module directory, that is ${module

 .}/icons/...

Complete a dummy tool

The only thing to complete to open our first tool is the getComponent() method, for the moment just return a JLabel(). To do
this you need to import . The fastest way to import this model is:JDK/javax.swing@java_stub

hit .ctrl+R
write .JLabel
one of the suggested option should be the model indicated above, select it.
now you can use as java statement.new JLabel()

The tool should look this way:

tool SVGViewer {
caption: Visualization
number: <no>
icon: <here you have the added icon>
position: right
[snip]
getComponent()->JComponent {
new JLabel("Your first Tool.");
}
}

Tool life cycle

Remember that a Tool is instantiated only once when you open it or in case of modifications while you are developing it, indeed
the method is called once. Actions when invoked alter the state of the Tool, in our case set the node to begetComponent()
displayed, and call method that has the effect to set the Tool visible on screen.openTool()

Adding actions
An is required to open our tool and an is required in order to display the action menu somewhere in one ofaction action group
the MPS menus. First create the action:

right click on the model and select .plugin New -> j.m.lang.plugin -> Action
set the name and other trivial parameters.
action context parameters are parameters passed to the action at runtime. They are specified from fields of classes
of the MPS or Idea API.
Here we need the key contained into , include its model with .PROJECT CommonDataKeys ctrl+R
Another important container of the keys is , we are going to use it in this tutorial.MPSCommonDataKeys
now you should be able to select into the drop down menu that appears with .PROJECT ctlr+space
set the parameter to "V", it does not bind any key to our menu only display the first letter of undermnemonic: Visualize
scored.

To complete the method as below your should add as dependency of the plugin solution. The toolexecute() MPS.Platform
should look now this way:

action VisualizeAction {
mnemonic: V
execute outside command: false
also available in: << ... >>

caption: Visualize
description: <no description>
icon:<our icon>

construction parameters
<< ... >>

action context parameters (always visible = false)
Project project key: PROJECT required

<update block>

execute(event)->void {
tool<SVGViewer> svgViewer = this.project.tool<SVGViewer>;
svgViewer.openTool(true);
}
}

Last thing to do to open the tool is to add our action somewhere into the MPS menus:

right click on the model and select .plugin New -> j.m.lang.plugin -> ActionGroup
call it .VisualizeActionGroup
you should see a small red/mandatory field, here select , another field where you can select actions shouldelement list
appear.
select our , should be the first option.VisualizeAction

The section is used to specify where the action menu should appear, as in the case of wemodifications CommonDataKeys
need to import a model in order to specify interesting places:

EditorPopup contained in is the menu that appears when you right click over the editorj.m.ide.editor.actions
area.
NodeActions contained in is the menu that appears when you right click over a node in the tree area.j.m.ide.actions
search to find more, another one is .ActionGroupDeclaration ModelActions

Your action group should be:

group VisualizeActionGroup
is popup: false
contents
VisualizeAction
modifications
add to EditorPopup at position <default>

It's time to open our tool:

rebuild the solution, .ctrl+F9
either from a node on the left tree or from the editor you should the menu .Visualize

Keys binding with Keymap

As stated above the parameter does not realize any binding rather it's just to visually underscore one of themnemonic:
characters of the menu.
Keys binding is declared with instance of from the language:KeymapChangesDeclaration j.m.lang.plugin

after creation add a item.simple
then select into the field.VisualizeAction action
indicate as binding.ctrl+alt+VK_V

Rebuild with and you should be able to open the tool using .ctrl+F9 ctrl+alt+V

Use the defined actions programmatically

As we saw can be defined that displayed somewhere in the MPS menus. But and can also beactions actions action groups
instantiated programmatically, actions will be displayed like buttons and action groups like toolbars.
See SVGViewer.getComponent() where the Tool toolbar is built, take a look at the and creators. ForactionGroup<> toolbar<>
this you need to import . All actions into the package are very simple they get the Toolj.m.workbench.action@java_stub toolbar
from the field and call one or more methods to update its state. The action has also the context parameter.project Save FRAME

Tune actions

The action we've created is always available but we want to show it only when we are on a node . To do it add aIVisualizable
 to the VisualizeAction:context parameter

action context parameter (always visible = false)
Project project key: PROJECT required
node<IVisualizable> elementToVisualize key: NODE required

Also note the to dynamically set the text displayed as menu. If you clone and open theevent.getPresentation().setText()
PlantMPS plugin you can verify that the action appears only for nodes, try the and Visualize IVisualizable DummyVis1 DummyV

 nodes.is2

Dynamic actions

As we have just seen the nodes can be visualized in several categories. This is implemented with .DummyVis2 dynamic actions
In particular when a node has only one category it's handled by the action, see VisualizeAction VisualizeAction.isApplic

. When a node as more than one category this action become disabled and becoable(event) VisualizeActionParametrized
me enabled. This ladder action is almost equal to the first but it has a , is this case a string named .construction parameter cat
If we have the category we want to display the method can display this category through instead of theexecute() VisGraph
first available category as done by .VisualizeAction

The parametrized actions are created by that differs from in severalVisualizeActionGroupDynamic VisualizeActionGroup
places. First right after its creation you should select (right below) instead of . Theit's invisible when disable update element list
content of the method is simple, however note:update(event)

the statement used to add the parametrized action.add
the method.disable(boolean)
there is also a method to dynamically visualize the added actions inline with all the other menus orsetPopup(boolean)
as a separate menu (popup).

Remember to open the when you specify the parameter because you when to enter the method.Inspector cat toString()

Here the PlantMPS plugin differs from the original mbeddr plugin that always enable both parametrized and non parametrized
actions. Actually the current implementation of PlantMPS could have been done only with dynamic actions enabling the popup
in case of more than one action and disabling the popup in case of just one action. But this would have given a smaller tutorial.

in case of more than one action and disabling the popup in case of just one action. But this would have given a smaller tutorial.
The concept that result to be handled by the dynamic group is and its instance .DummyVisualizableMoreCategory DummyVis2

Create actions programmatically

Actions can also be created, and used programmatically, see for instance that implements theChangeCategoryAction
combobox that let the user switch from one category to another category of the same node. In the AbstractChangeCategoryA

 class note how the property is created with a specific concept (from).ction enabled Property baseLanguage

History

The class is almost pure java but:VisualizationHistory

to implement the history i necessary to save a reference to the node to visualize at that point of the history and which
category to show. However the node is not assigned directly to a field of an history item, as you can see from the use of
the class. This is to prevent memory leaks as pointed out in SNodePointer HowTo -- Adding additional Tools (aka

.Views)

Add PlantUML and SVG support
At this point we are going to use the interface from the language, its's not described in detailsIVisualizable o.m.plantmps
because it really simple and it has nothing related with plugins. Just remember that to create the field oneProject project
needs to import . I've pointed out this because dependencies are often the dark side of MPS.j.m.project@java_stub

Note that the PlantMPS plugin differs from mbeddr plugin in the way it responds to user click over the SVG image. As stated
above mbeddr executes an HTTP request toward its HTTP server and it execute the node selection on the editor. Whereas
PlantMPS directly execute the code that select the node, see .MbeddrUserAgent.openLink()

Adding jars

After you have placed your jars into a directory, in our case the dir. under the plugin solution dir, from the lib Module
 window (alt+enter) you have to:Properties

Common tab: click and choose .Add Model Root javaclasses
then on the right select the jars for your dir and click the button.Models
into the tab add the jars into the section.Java Libraries

If everything went well you should see a new item into the navigation tree of your language/solution named . Rememberstubs
that in case you add other jars the is required only when you add the firsts jars.Add Model Root -> javaclasses

Implenting language, generation plan and java_stub diagrams
to be continued

https://confluence.jetbrains.com/pages/viewpage.action?pageId=116622792
https://confluence.jetbrains.com/pages/viewpage.action?pageId=116622792

	Dive into plugins: the PlantMPS plugin

