
Debugger

Debugger
MPS provides an API for creating custom debuggers as well as integrating with debugger for java. See Debugger features

 for a description of MPS debugger features.overview
Integration with java debugger

Nodes to trace and breakpoints
Startup of a run configuration under java debugger
Custom viewers

Creating a non-java debugger
About DebugInfoInitializer

.debug files
How to write DebugInfoInitializer

Integration with java debugger

To integrate your java-generated language with java debugger, provided by MPS, you should specify:

on which nodes breakpoints could be created;
nodes which should be traced;
how to start your application under debug;
custom viewers for your data.

Not all of those steps are absolutely necessary; which are – depends on the language. See next parts for details.

Nodes to trace and breakpoints

Suppose you have a language, let's call it  which generates code on some , which in turnhighLevelLanguage lowLevelLanguage
is generated directly into text (there can be several other languages between  and , ithighLevelLanguage lowLevelLanguage
does not really metter). Suppose that the text generated from  is essentially java, and you whant to havelowLevelLanguage
your  integrated with java debugger. See the following table:highLevelLanguage

 lowLevelLanguage is baseLanguage lowLevelLanguage is not baseLanguage

highLevelLanguage extends baseLa
nguage
(uses concepts ,Statement Express

,  etc)ion BaseMethodDeclaration

Do not have to do anything. Fully implement  foDebugInfoInitializer
r .lowLevelLanguage

highLevelLanguage does not extend
baseLanguage

Specify breakpointable concepts in DebugI
 for .nfoInitializer highLevelLanguage

Fully implement  foDebugInfoInitializer
r .lowLevelLanguage
Specify breakpointable concepts in DebugI

 for .nfoInitializer highLevelLanguage

See section  of this document for further information.About DebugInfoInitializer

Startup of a run configuration under java debugger

MPS provides a special language for creating run configurations for languages generated into java – jetbrains.mps.baseLangua
. Those run configurations are able to start under debugger automatically. See ge.runConfigurations Run configurations for

 for details.languages generated into java

Custom viewers

When one views variables and fields in a variable view, one may want to define one's own way to show certain values. For
instance, collections could be shown as a collection of elements rather than as an ordinary object with all its internal structure.

For creating custom viewers MPS has  language.jetbrains.mps.debug.customViewers

This part is different in MPS2.0 See the changes in .MPS 2.0 documentation

Note that in MPS2.0 M1 customViewers language has been significantly improved (see ).MPS 2.0 documentation

https://confluence.jetbrains.com/display/MPSD1/Debugger+features+overview
https://confluence.jetbrains.com/display/MPSD1/Debugger+features+overview
https://confluence.jetbrains.com/display/MPSD1/Run+Configurations#RunConfigurations-javarunconfigs
https://confluence.jetbrains.com/display/MPSD1/Run+Configurations#RunConfigurations-javarunconfigs
https://confluence.jetbrains.com/display/MPSD2/Debugger#Debugger-nodestotrace
https://confluence.jetbrains.com/display/MPSD2/Debugger#Debugger-customviewers


For creating custom viewers MPS has  language.jetbrains.mps.debug.customViewers

A language jetbrains.mps.debug.customViewers enables one to write one's own viewers for data of certain form. During a
debug session, a raw data from stack comes in special form: as proxies for values in target JVM. Such proxies are reflected in
customViewers language with language constructs and types.

A main concept of customViewers language is a custom data viewer. It receives a raw java value (which comes from objects on
stack) and returns a list of so-called watchables. A watchable is a pair of a value and its label (a string which cathegorizes a
value, i.e. whether a value is a method, a field, an element, a size etc.)

The types introduced in customViewers language are:

value, its descendants:
arrayValue,
primitiveValue,
objectValue, which in turn has descendant:
stringValue;
watchable, a different type.

In the following table those types are described in detail:

Type name Operations

arrayValue element – returns value by index;
allElements – returns ;list<value>
elementsRange – returns elements from first index to second index as list<value>;
size – returns size of an array as int.

primitiveValue javaValue – returns an Object (which in fact is int or long or char etc); this is a java value which is reflected
by this primitiveValue.

objectValue field – gets a field's name and returns a value of that field (as "value");
fields – returns all fields as ;list<value>
call method – takes method's name and its JNI signature and returns the result of method call (as
"value"); call method operation also receives method arguments but currently only those of primitive
type (because objects can't be just written as java code executed in MPS JVM, but they should be
created somehow within target JVM, and currently there's no possibility in customViewers language to do
so; however it's planned to implement);
classFQName – returns a string which is an object's class' fq name;
is instance of – takes class fq name and returns whether object is instance of that class or not.

stringValue all the operations of ;objectValue
javaStringValue which returns a string which is equal to the string reflected by this stringValue.

This is the custom viewer specification for  class:java.util.List



And here we see how a list is displayed in debugger view:



Creating a non-java debugger

You can create a non-java debugger using the API provided by MPS. You can see how it is done in jetbrains.mps.samples.nanoc
language – a toy language generated into C. This language is supplied with MPS among other sample languages. The project
location is .%HOME_PATH%/MPSSamples.1.5/nanoc/nanocProject/nanocProject.mpr

About DebugInfoInitializer

DebugInfoInitializer concept surves two purposes:

spesify which nodes require to save some additional information in  file for (like information about positions text,.debug
generated from the node, visible variables, name of the file the node was generated into etc.);
specify how to create a breakpoint on a node.

.debug files

.debug files contain information allowing to connect nodes in MPS with generated text. For example, if a breakpoint is hit, java
debugger tells MPS the line number in source file and to get the actual node from this information MPS uses information from .

 files.debug

.debug files contain the following information:

position information: name of text file and position in it where the node was generated;
scope information: for each "scope" node (such that has some variables, associated with it and visible in the scope of
the node) – names and ids of variables visible in the scope;
unit information: for each "unit node" (such that represent some unit of a language, for example a class in java) –
name of the unit the node is generated into.

How to write DebugInfoInitializer

To write a  for your language create an instance of  concept in the language'sDebugInfoInitializer DebugInfoInitializer
plugin.

In the following table sections of  are described:DebugInfoInitializer

In MPS2.0 this is done in two different concepts.

In MPS2.0 .debug files were renamed to trace.info files.

In MPS2.0 concepts ,  and  of textGen language are used for thatTraceableConcept ScopeConcept UnitConcept
purpose. See .MPS 2.0 documentation

https://confluence.jetbrains.com/display/MPSD2/Debugger#Debugger-traceablenodes


Section Description Example

concepts to add debug
info

Concepts for which location in text is saved and for which breakpoints could
be created.

scope concepts Concepts which have some local variables, visible in the scope.

unit concepts Concepts which are generated into separate units, like classes or inner classes
in java.

Previous Next

https://confluence.jetbrains.com/display/MPSD1/Stubs
https://confluence.jetbrains.com/display/MPSD1/Changes+highlighting

	Debugger

