
1.

TextGen

TextGen language aspect

Introduction

The language aspect defines a model to text transformation. It comes in handy each time you need to convert your models into the textTextGen
form directly. The language contains constructs to print out text, transform nodes into text values and give the output some reasonable layout.

Operations

The command performs the transformation and adds resulting text to the output. You can use command to report problems inappend found error
the model. The command demarcates blocks with increased indentation. Alternatively, the and with indent increase depth decrease depth
commands manipulate the current indentation depth without being limited to a block structure. The command applies the currentindent buffer
indentation (as specified by or) for the current line.with ident increase/decrease depth

Operation Arguments

append any number of:

{string value}
\n
$list{node.list} - list without separator
$list{node.list with ,} - with separator
$ref{node.reference}
${node.child}

found error error text

decrease depth decrease indentation level from now onwards

increase depth increase indentation level from now on

indent buffer apply indentation to the current line

with indent { <code> } increase indentation level for the <code>

Examples

Here is an example of the component for the (jetbrain.mps.baseLanguage).text gen ForeachStatement

text gen component for concept ForeachStatement {
 (node, context, buffer)->void {
 if (node.loopLabel != null) {
 append \n ${node.loopLabel.name} {:} ;
 } else if (node.label != null) {
 append \n ${node.label} {:} ;
 }
 append \n ;
 indent buffer ;
 append {for (} ${node.variable} { : } ${node.iterable} {) {} ;
 with indent {
 append ${node.body} ;
 }
 append \n {}} ;
 }
}

1. This is an artificial example of the :text gen

text gen component for concept CodeBlockConcept {
 (node, context, buffer)->void {
 indent buffer ;
 append {codeBlock {} \n ;
 with indent {
 indent buffer ;
 append {// Begin of codeBlock} \n ;

 indent buffer ;
 append {int i = 0} \n ;

 indent buffer ;
 append {// End of codeBlock} \n ;
 }
 append {}} ;
 }
}

producing following code block containing a number of lines with indentation:

text gen component for concept CodeBlockConcept {
codeBlock {
 // Begin of codeBlock
 int i = 0
 // End of codeBlock
}

Previous Next

http://confluence.jetbrains.com/display/MPSD2/Data+flow
http://confluence.jetbrains.com/display/MPSD2/Plugin

